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Introduction to Physics 

 

Physics is the most fundamental of the sciences. Its goal is to learn how the Universe 

works at the most fundamental level—and to discover the basic laws by which it operates. 

Theoretical physics concentrates on developing the theory and mathematics of these laws, 

while applied physics focuses attention on the application of the principles of physics to 

practical problems. Experimental physics lies at the intersection of physics and engineering; 

experimental physicists have the theoretical knowledge of theoretical physicists, and they 

know how to build and work with scientific equipment. 

 

Physics is divided into a number of sub-fields, and physicists are trained to have some 

expertise in all of them. This variety is what makes physics one of the most interesting of the 

sciences—and it makes people with physics training very versatile in their ability to do work 

in many different technical fields. 

 

The major fields of physics are: 

• Classical mechanics is the study the motion of bodies according to Newton’s laws of 

motion, and is the subject of this course. 

• Electricity and magnetism are two closely related phenomena that are together 

considered a single field of physics. 

• Quantum mechanics describes the peculiar motion of very small bodies (atomic sizes 

and smaller). 

• Optics is the study of light. 

• Acoustics is the study of sound. 

• Thermodynamics and statistical mechanics are closely related fields that study the 

nature of heat. 

• Solid-state physics is the study of solids—most often crystalline metals. 

• Plasma physics is the study of plasmas (ionized gases). 

• Nanoscience and Nanotechnology is the new emerging field of physics 

• Atomic, nuclear, and particle physics study of the atom, the atomic nucleus, and the 

particles that make up the atom. 



• Relativity includes Albert Einstein’s theories of special and general relativity. Special 

relativity describes the motion of bodies moving at very high speeds (near the speed 

of light), while general relativity is Einstein’s theory of gravity. 

• The fields of cross-disciplinary physics combine physics with other sciences. These 

include astrophysics (physics of astronomy), geophysics (physics of geology), 

biophysics (physics of biology), chemical physics (physics of chemistry), and 

mathematical physics (mathematical theories related to physics). 

 

Besides acquiring knowledge of physics for its own sake, the study of physics will 

give you a broad technical background and set of problem-solving skills that you can apply to 

wide variety of other fields. Some students of physics go on to study more advanced physics, 

while others find ways to apply their knowledge of physics to such diverse subjects as 

mathematics, engineering, biology, medicine, and finance. 

 

In this Book, there are five Blocks. Block I and II deals with Wave mechanics and 

Fundamental of Quantum mechanics, Block III and IV deals with Fundamentals of Nuclear 

physics and Radioactivity and, Block V deals with Nuclear reactions. 
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Wave Mechanics 

 

STRUCTURE 

 

Overview 

Learning Objectives 

 

1.1 Introduction 

1.2 Dual nature of light  

1.3 De’ Broglie wavelength  

1.4 Wave and group velocity  

1.5 Davisson and Germer experiment  

1.6 G.P. Thompson experiments  

1.7 Heisenberg’s Uncertainty Principle.. 

 

 

Summary 

 

 

OVERVIEW 

 

We will begin this Unit by describing Dual nature of matter, and in this 

context, we will derive the expression for de Broglie wavelength. We will 

then touch wave and group velocity and its experimental verification. In 

addition, study about Heisenberg’s Uncertainty  principle  
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LEARNING OBJECTIVES 

 

After completing this Unit, you should be able to: 

 

• differentiate between particle and wave nature of matter;  

• Derive the expression for de broglie’s wavelength 

• Derive the relation between wave and group velocity 

 

1.1 Introduction 

 

Nucleons in a nucleus do not behave like classical  particles 

(colliding like billiard balls); instead, the wave behavior of the nucleon 

determines the properties of the nucleus. Therefore, we need quantum 

mechanics, which is a mathematical technique that enables us to 

calculate the wave behavior of a material particle.   

The quantum behavior of light and the photoelectric effect that 

had been analyzed, showed that the light or electromagnetic waves 

should also be considered as if its energy were delivered not smoothly 

and continuously as wave but instead in concentrated bundles or 

quantum effect (particle of light ).   

The analogy between matter and light (wave) was made in 1924 

by de Broglie; he postulated that associated with a particle moving with 

momentum p is a wave of wavelength λ = h/p (Eq.1.22). Experimental 

confirmation soon followed through the diffraction of electrons 

(particles) like waves with de Broglie wavelength. The de Broglie 

theory was successful in those instances, but it is incomplete and 

unsatisfying in describing the particle by classical physics, since the 

classical particle has a definite position in space and unique momentum 

p.  

The solution of this problem comes from quantum physics, the size of a 

quantum particle varies with the experiment performed. Thus, an 

electron or particle may have a certain size in one experiment and a very 

different size in another. Only through this coupling of the observing 

system and the observed object can we define observation in quantum 



3 

physics. The particle then is localized within some region of space of 

dimension ∆x. It is likely to be found in that region and unlikely to be 

found elsewhere. We improve our knowledge of ∆x at the expense of 

our knowledge of momentum px, the very act of confining the particle 

to ∆x destroys the precision of our knowledge of px.  It is not our goal 

to take up the study of quantum mechanics as a topic by itself. On the 

other hand, we have no reasons to avoid using quantum mechanics 

whenever it is the proper way to understand nuclear concepts and 

radiation interactions.   

In the following sections, the concepts and terminologies in 

quantum mechanics (Schrödinger equation) will be given, since they are 

such integral parts of nuclear concepts, nuclear structure and the 

interaction of radiation with matter that some knowledge of quantum 

mechanics is essential to having full command of the language of 

nuclear physics.  

 

1.2 Dual nature of light 

The true nature of light is difficult to assess. Experiments 

showed that light exhibited wavelike properties of diffraction and 

interference. On the other hand, photoelectric effect indicates that light 

has the aspects of a particle photon, with both energy and momentum. 

Thus light exhibits a wave-particle duality. 

The wave-particle duality was extended to particles as matter 

waves by Louis de Broglie. His theoretical study on the nature of 

particles and waves led to the invention of a new mechanics of particles 

called quantum mechanics. 

Matter waves 

The radiant energy has dual aspects of particle and wave, hence a 

natural question arises, if radiation has a dual nature, why not the 

matter. In 1924, a French Physicist Louis de Broglie put forward the 

bold hypothesis that moving particles should possess wave like 

properties under suitable conditions. He reasoned this idea, from the 

fact, that nature is symmetrical and hence the basic physical entities – 
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matter and energy should have symmetrical characters. If radiation 

shows dual aspects, so should matter. 

 

 

1.3 De Broglie wavelength  

Consider a photon of energy ‘hν’ moving with the velocity of light ‘c’. 

According to the Plancks theory of radiation, the energy of a photon is 

given by, 

 

                               

hc
E h


= =

  

   (wave aspect)  

c




 
= 

  ---------- (1) 

 

where,    h → Plank’s constant 

               ν → frequency of radiation 

 

 If the photon is considered as a particle of mass ‘m’ then 

according to Einstein’s mass – energy relation, the energy of the photon 

is given by , 

                             

                                 E = mc2     (particle aspect) --------------------- (2) 

  

 The energy of the photon in the two cases is the same, hence 

from equations (1) and (2) we get, 
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 If a particle of mass ‘m’ travels with a velocity ‘v’ then its 

momentum is ‘mv’. The wavelength corresponding to this particle is 

given by, 

                                        

 

                                                                   ------------------- (3) 

 

             

  

where, λ→ wavelength of matter waves. 

 

 Equation (3) is called as deBroglie wave equation. 

 

deBroglie wavelength in terms of kinetic energy 

 The kinetic energy of a moving particle is,  
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 deBroglie wavelength  

 

 

 

The above equation gives the deBroglie wavelength in terms of kinetic 

energy. 

 

h h

mv p
 = =

 

2

h h

p mE
 = =

 



                                                                                 6 

deBroglie wavelength associated with electrons 

 Consider an electron of mass ‘m’ charge ‘e’, which is 

accelerated by the potential ‘V’ from rest. 

 

                 Energy gained by the electron = eV ----------------- (1) 

 

This energy gained is converted into kinetic energy of the electron. 

Kinetic energy of the electron = 

21

2
mv

 ------------------------- (2) 

Equating (1) and (2) 
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We know deBroglie wavelength 

h

mv
 =

 

Substituting the value of ‘v’ from the above equation  
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Substituting the values, 
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 The above equation gives the relation of deBroglie wavelength 

associated with an electron. 

 

 

1.4 Wave and group velocity 

 

Phase and group velocity are two important and related concepts in 

wave mechanics. They arise in quantum mechanics in the time 

development of the state function for the continuous case, i.e. wave 

packets.  

Harmonic Waves and Phase Velocity 

A one-dimensional harmonic wave (Figure 1) is described by the 

equation,  

 

where A0 is the wave amplitude, w is the circular frequency; k is the 

wave number; and j  is an initial, constant phase. The argument for the 

sine function, q (x, t) = wt - kx + j  is called the phase. Sometimes the 

wave number is referred to as the spatial frequency or propagation 

constant.  

A
V

24.12
=
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Figure 1: Harmonic Wave 

 

This is a monochromatic wave (one frequency). There are no strictly 

monochromatic waves in nature. For example, the generating source of 

the wave may move slightly, introducing spurious frequencies.  

In general, these waves propagate without warping. That is, the phase q 

(x, t) is a constant:  

 

 

vphase is the phase velocity for a wave.  

 

From the point of view of sending information, these waves are not 

useful. They are the same throughout time and space. Something must 

therefore be modulated, such as frequency or amplitude, in order to 

convey information. The resulting wave may be a perturbation that acts 

over a short distance, i.e. a wave packet. This wave packet can be 
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considered to be a superposition of a number of harmonic waves, in 

other words a Fourier series or integral.  

Group Velocity 

In order to convey information, something more than a simple harmonic 

wave is needed. However, the superposition of many such waves of 

varying frequencies can result in an "envelope" wave and a carrier wave 

within the envelope. The envelope can transmit data. A simple example 

is the superposition of two harmonic waves with frequencies that are 

very close (w1 ~ w2) and of the same amplitude. The equations for the 

motion are,  

 

 

The plot of such a wave is shown in Figure 2.  

 

Figure 2: Group Velocity 
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The envelope (the green line) is given by u1 and travels at the group 

velocity. The carrier wave (the blue line) travels at the phase velocity 

and is given by u2. The wave packet moves at the group velocity. It is 

the envelope which carries information. Group velocity and phase 

velocity are not necessarily the same. Group velocity is given by,  

 

 

Phase and group velocity are related through Rayleigh's formula,  

 

 

 

 

If the derivative term is zero, group velocity equals phase velocity. In 

this case, there is no dispersion. Dispersion is when the distinct phase 

velocities of the components of the envelope cause the wave packet to 

"spread out" over time. The components of the wave packet (or 

envelope) move apart to the degree where they no longer combine to 

complete the envelope.   

EXPERIMENTAL STUDY OF MATTER WAVES:- 

Several years after Debroglie’s work, Davision and Germer and G.P 

Thomson independently demonstrated that streams of electrons are 

diffracted when they are scattered from crystals. 

 

1.5 Davisson and Germer experiment 

Principle:- Based on the concept of wave nature of matter fast moving 

electrons behave like waves. Hence accelerated electron beam can be 

used for diffraction studies in crystals. 
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An electron gun which consists of a tungsten filament F heated by a low 

battery B1, produces electrons. These electrons are accelerated to a 

desired velocity by applying suitable potential from high tension source 

B2. The accelerated electrons are collimated into a fine beam by 

allowing them to pass through a system of pin holes provided in the 

cylinder ‘C’. The fast moving electrons is made to strike the target (Ni 

crystal) capable of rotating about an axis perpendicular to the plane of 

the diagram i.e. incident ray direction. The electrons are now scattered 

in all directions by the atomic planes of the crystal. The intensity of the 

electron beam scattered in direction can be measured by the electron 

collector which can be rotated about the same axis as the target. The 

collector is connected to a sensitive Galvanometer whose deflection is 

proportional to the intensity of the electron beam entering the collector. 

The instrument is kept in an evacuated chamber. 
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In an investigation, the electron beam accelerated by 54V was directed 

to strike the given Nickel crystal are a sharp maximum electron 

distribution occurred at a angle of 500 with the incident beam. The 

incident and diffracted beam in the experiment make an angle of 

650with the Bragg’s planes. The spacing of planes in this Bragg’s 

planes by X-Ray diffraction is 0.91 nm.  

New according to Bragg’s law 2d sinθ = nλ 

2×0.91×10−10 ×sin 650 =λ ×1 ( n =1)  

∵ λ =1.64×10−1 ×10−9m 

λ = 0.164nm 

For 54V electron the de Broglie wavelength associated with the electron 

is given by 

 

λ = 0.164nm 

This is excellent agreement with experimental value. The Davission-

Germer experiment provides a verification of de-Broglie hypothesis of 

the nature of moving particle. 
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1.6 G.P. Thompson experiments 

G.P Thomson performed experiments in which electrons are 

accelerated from 10,000 to 50,000 volts. In these experiments the 

generation of electrons are considered analogous to X-Ray obtained by 

diffraction pattern. The diffraction pattern is obtained by only when 

wave is associated with particle. Hence Thomson explains the concept 

of matter waves. The electrons are emitted from the filament and only 

some accelerated electrons are passing through cathode ‘C’. Next these 

electrons are passed through two slits S1 and S2 and a thin pencil beam 

of electrons is obtained. This electrons beam allowed to fall on a thin 

foil ‘G’ of gold or Aluminium of order10−6 cm. The photograph of 

electron beam from the foil is recorded on the photographic plate ‘P’. 

Hence a pattern consists of concentric rings. The complete apparatus is 

kept in high vacuum chamber so that the electrons may not lose their 

energy y colliding with molecules of air or any inside the tube. 
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To conclude that, this pattern is due to the electrons and not due the X-

Rays. The cathode rays inside the tube are affected by the magnetic 

fields. The beam shifting considerably along the field is observed. 

Hence we can conclude that the pattern obtained is due to electrons only 

since x- Rays are not affected by electric and magnetic fields. 

 

 

1.7 Heisenberg’s Uncertainity Principle 

The uncertainty principle is one of the most significant laws of 

physics, discovered by Werner Heisenberg in 1927 (We cannot know 

the future because we cannot know the present). Accordingly, if we try 

to make a simultaneous determination of x and px, our result will show 

that each is uncertain by respective amounts ∆x and ∆px, which are 

related by the Heisenberg uncertainty relationship.   

∆x ∆px ≥ ћ/2 

where   ћ = h/2π = 1.0545×10-34 j.sec  

This equation states that if we arrange matters so that ∆x is small 

(corresponding to a narrow wave group), ∆p will be large. If we reduce 

∆p in some way, a broad wave group is inevitable and ∆x will be large.   

The same arguments hold for other form of the uncertainty 

principle, the other measurements concern energy and time. We might 

wish to measure the energy emitted during the time interval ∆t in an 

atomic or nuclear process. Since energy E = hν = hc/λ    where ν is the 

frequency , and ∆ν ≥ 1/∆t     also ∆E = h∆ν then: 

∆E ∆t ≥ ћ/2 

If a system live for a time ∆t, we cannot determine its energy 

except to within uncertainty ∆E. A third uncertainty relationship 

involves the angular momentum Lz, and the azimuthally angle φ, Fig.  

∆Lz ∆φ ≥ ћ/2 

That is, if we have Lz exactly, we know nothing at all about φ.    
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Figure. Bounded particle uncertainty relationships. 

 

de Broglie Wave Descriptions  

It is instructive to begin with the classical wave equation that 

incorporates the concept of de Broglie waves and to review some basic 

properties of waves and the concept of wave-particle duality.  

The wave nature of a moving particle leads to some remarkable 

consequences when the particle is restricted to a certain region of space 

instead of being able to move freely, as the electron bounded to the 

atom or a nucleon in the nucleus, and when it interacts with the nucleus 

or other particle.   

In classical mechanics, the wave equation for a one-dimensional 

periodic disturbance ξ(x, t) is: 

 

Solutions of the above equation may be of many kinds, reflecting the 

variety of waves that can occur, such as a single traveling pulse, a 

standing wave, a group (train) of waves or of superposed waves, etc…, 

the general solution is of the form: 
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where ω= 2πν is the angular frequency, υ the linear frequency, and k is 

the wavenumber related to the wavelength λ by k = 2π / λ. k and ω must 

satisfy the relation:   

ω= ck 

Therefore, our solution has the form of a traveling wave with phase 

velocity equal to c, which we will denote it by υph. In general, the 

relation between frequency and wavenumber is called the dispersion 

relation. We will see that different kinds of particles can be represented 

as waves, which are characterized by different dispersion relations.   

The solution is called a plane wave. In three dimensions, a plane wave 

is of the form eik.r. It is a wave in space that can be visualized as a 

series of planes perpendicular to the wavevector k at any spatial point 

on a given plane, the phase of the wave is the same. That is to say, the 

perpendicular planes are planes of constant phase. When we include the 

time variation e(−iωt), then     e[i(k.r-ωt)] becomes a traveling plane wave, 

meaning that the planes of constant phase are now moving in the 

direction along k at a speed of ω / k , which is the phase velocity of the 

wave υph.   

The wave equation also admits solutions of the form: 

ξ (x,t) =aosinkx cosωt 

These are standing wave solutions. One can tell a standing wave from a 

traveling wave by the behavior of the nodes, the spatial positions where 

the wave function is zero. For a standing wave, the nodes do not move, 

or change with time, whereas for a traveling wave, the nodes are: 

xn = (nπ +ωt)/ k 

Clearly the nodes are positions moving in the (+x) direction with the 

velocity dx/dt = ω/k.  

The choice between traveling and standing wave solutions as we will 

see depends on the physical solution of interest (which kind of problem 

one is solving). For the calculation of energy levels of a nucleus, the 

bound state problem, we will be concerned with standing wave 

solutions. In contrast, for the discussion of scattering problem, it will be 

more appropriate to consider traveling wave solutions.   
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Our interest in the properties of waves lies in the fact that the quantum 

mechanical description of a nucleus is based on the wave representation 

of the nucleus. It was first postulated by de Broglie (1924) that one can 

associate a particle of momentum p and total energy E with a group of 

waves (wave packet) which are characterized by a wavelength λ and a 

frequency ν , with the relation, given in Chapter One: 

 

 

Here, υ is the particle velocity. Moreover, the motion of the particle is 

governed by the propagation of the wave packet. This statement is the 

essence of particle-wave duality, a concept that we adopt throughout our 

study of nuclear physics. It is important to distinguish between a single 

wave and a group of waves. This distinction is seen most simply by 

considering a group of two waves of slightly different wavelengths and 

frequencies. Suppose we take as the wave packet: 

 

With 

 

 

Using the identity: 

 

We can rewrite  Ψ(x,t) as 

 

 

In this approximation, terms of higher order in dk/k or dω/ω are 

dropped. Eq.5.14 shows two oscillations, one is the wave packet 

oscillating in space with a period of 2π/k, while its amplitude oscillates 

with a period of 2π/dk (Fig. 5.2). Notice that the latter oscillation has its 
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own propagation velocity, dω/dk. This velocity is in fact the speed with 

which the associated particle is moving. Thus, we identify 

 

as the group velocity. The group velocity should not be confused with 

the propagation velocity of the wave packet, called the phase velocity 

(vph), given by: 

 

Here, mo is the rest mass of the particle and c the speed of light. We see 

the wave packet moves with a velocity greater than c, whereas the 

associated particle speed is necessarily less than c. This means that the 

phase velocity is greater than or equal to the group velocity.   

 

Figure . Spatial variation of a sum of two waves of slightly different 

frequencies and wave-numbers showing the wave packet moves with 

velocity υph that is distinct from the propagation (group) velocity υg of 

the amplitude.  

For a non-relativistic particle of mass m moving with momentum p, the 

associated wavevector k and its kinetic energy is:   

p = ћk and  

T = p2/2m = ћ2k2/2m 

This is the “particle view”. The corresponding “wave view” would have 

the momentum magnitude p = h/λ, with λ= 2π/k, and energy (usually 

denoted as E rather than T) as hν= ћω. The wavevector, or its 

magnitude, the wavenumber k, is a useful variable for the discussion of 

particle scattering since in a beam of such particles, the only energies 
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are kinetic, and both momentum and energy can be specified by giving 

k.   

For electromagnetic waves, the associated particle (the photon), has 

momentum p, which is also given by ћk, but its energy is: 

E = cћk = cp 

Comparing these two cases, we see that the dispersion relation ω and 

group velocity νg (Eq.5.15) are: 

 

for a non-relativistic particle, and ω= ck,  υg= c for a photon. 

For the calculation of energy levels of a nucleus, the bound state 

problem, such system is like a standing wave in a string stretched 

between the box's walls, the wave variable (wave function Ψ for the 

moving particle) must be zero at the walls, i.e., Ψ(0) = 0 and Ψ(a) = 0  

for a box of width a.   

The possible de Broglie wavelengths of the particle trapped in the box 

of width (a) is determined by the largest wavelength of λ = 2a and the 

next   λ = a then λ = 2a/3 … for n = 1, 2, 3…. respectively.  

So that λ = 2a/n    n= 1, 2, 3 

Accordingly, the momentum of the particle p and its kinetic energy T 

will be limited, the particle has no potential energy in this model, the 

only energies the particle can have are: 

 

N = 1, 2, 3, …. 
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Figure  de Broglie wave and principle quantum number )n(.  

Each permitted energy is called Energy Level, and the integer )n( that 

specifies energy levels En is called its quantum number.  

We can draw three general conclusions from the above equation:  

1. A bounded particle cannot have an arbitrary energy as a free particle 

can. These discreet energies depend on the mass of the particle and on 

the detailed forces acting on the particle to bond it )trapped(.  

2. A bounded particle cannot have zero energy, since λ = h/mυ, a speed 

υ = 0, means an infinite λ, but there is no way to reconcile an infinite 

wavelength with trapped particle.  

3. Because Plank‟s constant is so small, h = 6.63×10-34 j.sec, then 

quantization of energy is conspicuous only when the mass )m( and the 

width )a( are also small.  

It is convenient to mention that this quantum number )n( is precisely the 

same formula of the principle quantum number determined by the 

solution of the Schrödinger equation applied to a potential well, as we 

will see in the next section, where the quantization of the bounded 

nucleon in the nucleus is therefore described by the principle quantum 

number )n(. 
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LEARNING ACTIVITY  

1. Discuss in detail about dual nature of matter 

2. Explain the Davisson and Germer experiment with 

diagram 

3. Derive an relation between wave  and group velocity 

4. State and explain Heisenberg’s Uncertainity Principle   

Note: 

a) Write your answer in the space given below. 

b) Check the answer with your academic counsellor.  
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SUMMARY 

 

In this Unit, we said that dual nature of matter and derive an expression for de 

brogli wavelength and detail study about Wave and group velocity and also 

study the experimental setup for Davisson and Germer experiment and GP 

Thomson method. We also study about Heisenberg’s Uncertainty principle 

and verification 

 



Block II 

Quantum Mechanics 

STRUCTURE 

Overview 

Learning Objectives 

2.1 Introduction 

2.2 Basic Postulates of wave mechanics – 

2.3 Quantum operators -Linear operator, Hermitian operator, 

Parity operators 

2.4 Properties of wave Function 

2.5 Orthogonal and normalized wave functions 

2.6 Schrodinger’s Equations 

2.7 Application – Particle in a box. 

Summary 

OVERVIEW 

In this chapter on `Wave mechanics, we shall study the basic of the wave 

mechanics and quantum operator. We shall study about properties of wave 

function and schordinger’s equations and its applications. 

LEARNING OBJECTIVES 

After completing this Unit, you should be able to: 



• Understand the mathematics needed to understand quantum

mechanics.

• Know the inadequacies of classical mechanics, and what was needed

to getaround the related difficulties.

• Derive the equation for quantum-mechanical motion.

• Statistically interpret the wavefunction associated with a particle.

• Find the possible states in which a quantum-mechanical particle could

be found.

• Get the probability that the quantum-mechanical particle is in any

particular state.

• Understand the quantum-mechanical harmonic oscillator.

2.1 Introduction 

Quantum Mechanics 

 Quantum Mechanics began with the work of Planck, Dirac, de Broglie, 

Heisenberg, Bohr, Schrödinger, and Einstein from 1900 to 1930. It 

became a necessity as classical mechanics, which had up to that time 

answered all questions concerning the motion of a body, failed to 

explain some physical phenomena. It became clear that matter behaves 

as a particle or as a wave. In other words, a particle behaves as a wave; 

a wave also behaves like a particle. For example, light waves behave 

like particles, called photons. On the other hand, with an appropriate 

„slit,‟ electrons can be diffracted just like any other wave. It became 

necessary, therefore, to develop a wave equation that gives the 

dynamics of a particle – the Schroedinger equation. But then, if matter 

now behaves like a wave, it becomes necessary to give a statistical 

probabilistic interpretation to the possibility of finding a particle at any 

particular point, or within a given range of space available for the 

particle. In other words, it no longer makes sense to say with certainty 

that a particle is at a particular position, rather, it spreads out over a 

given range of position: the electron in the hydrogen atom is indeed 



smeared over the entire sphere outside the nucleus. This is encapsulated 

in the Heisenberg Uncertainty Principle: It is impossible to measure the 

position and the linear momentum of a body with infinite accuracy, 

simultaneously. If the atom is not polarised, it is as if half the electron 

resides in each hemisphere.  

You wonder why we do not realise this in day-to-day experience. This 

is because the uncertainty in your position is so small, because 

uncertainty is related to Planck‟s constant, which is of the order of 10 -34 

Js. At the atomic scale, this number is no longer „small.‟ As such, 

quantum mechanics becomes inevitable at the atomic and subatomic 

range of distances and masses. Another consequence of the wave nature 

of matter is that physical quantities can no longer take a continuou range 

of values. You would recall, for instance, that waves on a string within 

rigid supports, as well as sound waves in a pipe opened on one or either 

end can only take a set of frequencies. It then becomes natural for the 

electron in the hydrogen atom can only occupy a certain set of „allowed 

energies.‟ That was what Bohr tried to explain with some ad-hoc 

assumptions of allowed orbits.  

With what you have seen in this introduction, it is obvious that 

quantum mechanics is an interesting, area of physics, that finds application 

in all life, particularly at the atomic level and below. Quantum mechanics 

is therefore the present and the future of physics. Solid state devices such 

as transistors, which are the building blocks of electronics and computers; 

any material, since all matter is composed of atoms, the ordinary light you 

deal with everyday, Lasers, elementary particle physics, are just a few of 

the applications of quantum mechanics. 

 

 

 

 

 

 

 

 



1: Vector Spaces 

1.0 Introduction 

2.0 Objectives 

 At the end of this Unit, you should be able to:

 Define Vector Spaces

 Give examples of Vector Spaces

 Define linear independence

 Understand Inner or Scalar product of two vectors

 Normalise any given vector

3.0 Main Content

3.1 Vector Spaces 

3.2 Linear Independence 

3.3 Basis Vector 

3.4 Inner or Scalar Product 

3.5 Norm of a Vector 

4.0 
5.0 
6.0 
7.0 

1.0 

2.0 

Conclusion 

Summary 

Learning Activity
References/Further Readings 

Introduction 

In order to grasp Quantum Mechanics, you need to be conversant with Vector 

Spaces and other basic ideas of mathematics. The vector space of twice integrable 

functions enable you to define a set of functions that would form a set of 

„coordinates‟ for the vector-like functions, such that as we expand a given vector 

in 2-dimensional Euclidean space as a linear combination like ai+bj, we could 

also expand a given „quantum-mechanical function‟ as a linear combination of the 

set of functions. This Unit will teach you how to go about setting up the set of 

functions, that we shall call an orthonormal set. You shall learn to expand a given 

function in terms of the orthonormal set, and get to know how to recover the 

coefficient of expansion of a particular function. 

Objectives 

At the end of this Unit, you should be able to: 

 Define the term Vector Spaces

 Give examples of Vector Spaces

 Define linear independence

 Understand Inner or Scalar product of two vectors

 Normalise any given vector

3.0 Main Content 

Basic Postulates of wave mechanics



3.1 Vector Spaces 

No doubt, you are quite familiar with the concept of a vector. With vector spaces, we are 

generalising this basic idea. In other words, we shall have „vectors‟ that are no longer just 

ordinary geometrical vectors, but vectors of a different kind, but all having similar 

properties. We shall come across matrices that functions that you could give the same 

treatment as you did geometrical vectors. 

Definition 

Given a set  nvvv ,...,, 21 = S . If 

(i) njiSvv ji ...,,2,1,  1.1 

(ii) niSvi ..,,2,1, ;  1.2 

K , where K is a field, e.g., the real number line ( R ) or the complex plane ( C ), 

then, S is called a vector space or linear space. The vector space is a real vector space 

if RK  , and a complex vector space if CK  . 

Condition (i) says that if you add any two vectors of the vector space you will get a 

member of the space. Condition (ii) shows that a linear multiplication of any two vectors 

produces a vector also in the vector space. That certainly makes sense, doesn‟t it? You 

don‟t want a situation where you add two vectors in your space and get a vector not in the 

space. Moreover, you avoid a situation where multiplying by a constant takes your vector 

away from the space. We are now safe to carry out either operation without worrying 

whether the vector we get is a „sensible‟ vector, because we are sure it is. 

A way to remember these two conditions is: Additivity [condition (i)] + homogeneity 

[condition (ii)] = linearity. 

We now give you some examples of vectors spaces: 

Example 1: The set of Cartesian vectors in 3-dimensions, 3V

a, b 3V , R . 

(i) 3Vba 1.3 

(ii) a 3V 1.4 

Of course, you know that when two 3-dimensional vectors are added, you also get a 3-

dimensional vector. Moreover, multiplying a 3-dimensional vector by a real constant will 

give you a 3-dimensional vector. 

Example 2: nm  matrices under addition and scalar multiplication, mnM

mnMBA , , R  or C

(i) mnMBA  1.5 

(ii) mnmn MA  1.6 



You would recall that the addition of two nm matrices gives you an nm  matrix. 

Similarly, multiplying an nm  matrix by a real number or a complex number yields an 

nm  matrix. 

Example 3: A set of functions of x ,   Fxgxf .....),(),(

Fxgxf )(),( , R  or C

(i) Fxgxf  )()( 1.7 

(ii) Fxf )( 1.8 

Adding two functions of x will result in a function of x. It just has to be. Also, 

multiplying a function of x by a real number, you get a function of x. 

3.2 Linear Independence 

Given a set  n

ii 1
v . If we can write 

nnaaa vvv  2211  = 0 1.9 

and this implies the constants naaa  21 = 0, then we say  n

ii 1
v  is a linearly 

independent set. 

If even just one of them is non-zero, then the set is linearly dependent. Think of it: a 3-

dimensional Cartesian vector will be a zero vector, 0, notice the boldface type (not zero 

scalar), if and only if the three components are independently zero. Thus, for instance, i, 

j, and k, the traditional unit vectors in 3-dimensional Cartesian space are linearly 

independent. Mathematically, this means that 0kji    if and only if 

0  . 

Some other examples are in order here: 

Example 

1. Check if the set  jii ,2,  is linearly independent.

Solution

We form the expression

0332211   ccc

where i1 , i22   and j3  

Thus, 02 321  ccc jii  

or 0)2( 321  ccc ji

which implies 02 21  cc  and 03 c , since i and j are non-zero vectors. 

We see that 0,2 321  ccc  

1c and 2c do not necessarily have to be zero.

Conclusion: The set is not linearly independent. 



2. Show that },2,{ jki is a linearly independent set.

Solution

0jki  321 2 ccc

0,0,0 321  ccc

The set is linearly independent. 

Note that we have made use of the fact that 

0 kji zyx  implies 0,0,0  zyx  

3. Show that the set

































































1

2

1

,

0

1

1

,

1

0

1

 is linearly independent 

Solution 

0

1

2

1

0

1

1

1

0

1

321 


















































ccc

from which we obtain 

 321 ccc 0 (i) 

02 32  cc (ii) 

031  cc (iii) 

From (iii), 

31 cc  (iv) 

and from (ii), 

32 2cc   (v) 

Putting (iv) and (v) in (i), gives 

02 333  ccc

02 3  c or 03 c

02,0 3231  cccc

0321  ccc

Hence, we conclude the set is linearly independent. 

Note that we could have written the set of three vectors as  kjijiki  ,, .

Try this out on your own, and be sure you can. 

These vectors are not mutually orthogonal, yet, since they are linearly 

independent, we can write any vector in 3-dimensional Euclidean space as a linear 

combination of the members of the set. 



Now, take the determinant of the matrix formed by each of the set in the examples 

and convince yourself that there is another way of checking if a set of vectors is 

linearly independent. We give two examples: 

0

000

100

021



0111)10(1)10(1)01(1

101

210

111



Conclusion: The set is linearly independent if the determinant is not zero, it is 

linearly dependent if the determinant is zero. Does that sound strange? Look at the 

two rows or columns of a matrix such that one can be got from the other by a 

linear combination. The determinant of the matrix must be zero, meaning that the 

vectors are linearly dependent. 

3.3 Basis Vector 

Let V  be an n - dimensional vector space. Any set of n  linearly independent vectors 

neee ,,, 21   forms a basis for V . Thus, any vector Vv  can be expressed as a linear 

combination of the vectors neee ,,, 21  , i.e., 

nnxxx eeex  2211 1.10 

Then we say that the vector space V  is spanned by the set of vectors },,,{ 21 neee  . 

},,,{ 21 neee   is said to be a basis for V . 

If we wish to write any vector in 1 (say, x ) direction, we need only one (if possible, a 

unit)  vector. Any two vectors in the x  direction must be linearly dependent, for we can 

write one as i1a  and the other i2a , where 1a  and 2a are scalars. 

We form the linear combination 

0)()( 2211  ii acac 1.11 

where 1a and 2a are scalar constants. 

Obviously, 1c and 2c need not be zero for the expression to hold, for 
1

2
21

a

a
cc   would 

also satisfy expression (1.11).  

We conclude therefore that the vectors must be linearly dependent. 

Can you then see that we can say that in general, any 1n  vectors in an n -dimensional 

space must be linearly dependent?  



Example 

You are quite familiar with the set of vectors (i, j) as the normal basis vectors in 2-

dimensional space or a plane. Show that ),( jiji   is also a set of basis vectors for the 

plane. 

Solution 

We check for linear independence. 

0jiji  )()( 

Then, 

0ji  )()( 

This means that 

0 

and 

0 

Adding the last two equations makes us conclude that 0 . Consequently,   is also 0. 

We conclude that the two vectors are linearly independent. Since these are two linearly 

independent vectors in two dimensional (Euclidean) space (a plane), they form a basis for 

the plane. 

3.4 Inner or Scalar Product 

Here, we shall expand your idea of the inner product of two vectors. In your first year in 

the University, you came across the dot or inner product of two vectors. In this section, 

we shall extend that idea, as mathematicians do, to other vector-like quantities. But first, 

let us take a look at the properties of an inner product. 

Properties of the Inner Product 

Let V  be a vector space, real or complex. Then, the inner product of v , Vw ,written as 

(v,w), has the following properties: 

(i) (v,v) 0  1.11 

(ii) (v,v) = 0 if and only if v = 0 1.12 

(iii) (v,w) = (w,v) (Symmetry) 1.13 

(iv) ),( wvc = ),(* wvc ; ),( wv c = ),( wvc 1.14 

(v) ),(),(),( zvwvzwv  1.15 

(vi) wvwv ),(  1.16 

where *c  is the complex conjugate of the scalar c. 

Example 1: Given the vectors a and b in 3-dimensions, i.e., 3V , we define the inner 

product as 

baba
T),(

where T
a is the transpose of the column matrix representing a. This is the dot product 

you have always been familiar with. 



a = 

















1

0

1

, and b = 

















1

1

2

. ]101[T
a

  3

1

1

2

101),( 

















 baba
T

Do not mix this up 

    ),(),( cddcdc 





































z

y

x

zyxzzyyxx

z

y

x

zyx

T

c

c

c

ddddcdcdc

d

d

d

ccc , with 

  T

zzyzxz

zyyyxy

zxyxxx

zyx

z

y

x

T

dcdcdc

dcdcdc

dcdcdc

ddd

c

c

c

dccd 



































 , generally. 

Example 2: The space of nm  matrices, mnM : 

The inner product of A and B mnM is defined as 

(A,B) = )( BA
Tr 1.17 

where T
AA  , the complex conjugate of the transpose of A. Indeed, it does not matter 

in what order, so it could also be the transpose of the complex conjugate of A. If A is a 

real matrix, then there is no need taking the complex conjugate. In that case, T
AA  .

Tr (P) is the trace of the matrix P, the sum of the main diagonal elements of P.

e.g., let A = 








11

0i
 and B = 







 

01

0 i











10

1i
T

A ; 









10

1i
T

AA


BABA

T







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10

1i


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0 i
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 

01

11

101)(),(  
BABA Tr

Example 3: The space of square integrable complex valued functions, sF , over the 

interval ],[ ba , i.e., sFxf )(  implies that 
b

a
dxxf

2
)( . 

We define the inner product on this space by 


b

a
dxxgxfgf )()(*),( 1.18 

where )(* xf  is the complex conjugate of )(xf . 

Later, you shall see that this space is of utmost importance in Quantum Mechanics. 



3.5 Norm of a Vector 

Let X  be a vector space over K , the real or complex number field. A real valued 

function   on X  is a norm on X  (i.e., RX  : ) if and only if the following 

conditions are satisfied: 

(i) 0x 1.19 

(ii) 0x if and only if 0x   1.20 

(iii) yxyx  X yx, (Triangle inequality) 1.21 

(iv) xx   Xx and C (Absolute homogeneity) 1.22 

The norm of a vector is its “distance” from the origin. Once again, you can see the basic 

idea of the distance of a point from the origin being generalised to the case of the vectors 

in any vector space. 

x  is called the norm of x. 

In the case where RX  , the real number line, the norm is the absolute value, x . 

If the norm of v in the vector space V  is unity, such a vector is said to be normalised. In 

any case, even if a vector is not normalised, we can normalise it by dividing by the norm.  

Example 1: Given the vector a in 3V , the norm of a is 

),( aaa  1.23 

Thus, if a = 


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







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

1

0

1

, then 

  2

1

0

1

101),( 

















aa

2),(  aaa

We see that a is not normalised.

However, 



















1

0

1

2

1

a

a
c  is normalised. 

Example 2: The space of nm  matrices: 

Given the nm  matrix A, then the norm of A is defined as 

),( AAA Tr 1.24 
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e.g., let A = 







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0i



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

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T
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

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AATr

Therefore, 

3A

A is not normalised, but C = 
A

A
 = 









11

0

3

1 i
 is normalised. 

Example 3: The space of square integrable complex valued functions, sF ,  over the

interval ],[ ba ,  

Let sFxf )( , then we define 

),( fff  1.25 

where 
b

a
dxxfff

2
)(),(

f might not be normalised, but 
),( ff

f
h   is normalised. 

It is now obvious that we have to deal with a square integrable set of functions. We want 

to deal with only functions that we can normalise. 

EXAMPLES 

Exercise 

(i) Normalise each member of the set, and hence expand the vector  kji 434 

as a linear combination of the normalised set.

(ii) Is the set
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0

2

,

3

2

1

 linearly dependent or independent? Normalise 

each vector. 

4.0 Conclusion 

In this unit, you have learnt about vector spaces, a generalisation of the idea of vectors 

you have all along been familiar with, expanded to cover matrices, certain functions and 

all mathematical structures that satisfy the basic laws of vector spaces. You also came 

across linear independence, and saw the example of the vectors i and j in two-

dimensional Euclidean space, and with the help of linearly independent vectors, we were 

able to define a basis with which we could specify any vector in any given vector space. 



Then, you were introduced to the idea of the norm, a generalisation of the idea of the 

distance of a vector from the origin. Finally, you learnt how to normalise a vector.  

5.0 Summary 

In this Unit, you learnt the following: 

 Vector spaces are sets that contain some vector-like quantities that satisfy certain

conditions.

 How to check whether a set of vectors is linearly independent.

 A set of linearly independent vectors is necessary to span a space.

 n-dimensional vector space V  is spanned by the set of n vectors.

 The norm of a vector is its distance from the „origin.‟

 Dividing a vector by its norm normalises it, so that its length is unity.

6.0 Learning Activity

1. Show that the following are vector spaces over the indicated field:

(i) The set of real numbers over the field of real numbers.

(ii) The set of complex numbers over the field of real numbers.

(iii) The set of quadratic polynomials over the complex field.

2. Check whether the following vectors are linearly independent.

(i) kji  32 , kji 3 and kji  23

3. Show whether or not the set 





























1

1
,

1

1
 is a basis for the two-dimensional 

Euclidean space. 

4. Find the coordinates of the vector 








 i2

21
 with respect to the basis 


























 

















10

01
,

0

0
,

01

10
,

10

01

i

i
. 

5. Find the inner product of the following vectors:

(i) 


















2

2

i

 and 


















3

1

2

(ii) 22 ix and ix 32  20  x . 

(iii) A , mnMB  if 











131

112
A  and 







 


131

211
B . 

6. Find the norm of the following:
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(i) 


















3

1

2i

(ii) 22 ix , 10  x  (iii) 















 



213

312

211

D

7. Normalise each vector in the set

































































1

2

1

,

4

0

2

,

3

2

1

. 

7.0 References/Further Readings 

1. Mathematical Physics – Butkov, E.

2. Mathematical Methods for Physics and Engineering – Riley, K. F., Hobson, M.

P. and Bence, S. J.



Solutions to Learning Activity
1. Show that the following are vector spaces over the indicated field:

(i) The set of real numbers over the field of real numbers.

Let the set be R be the set of real numbers, then,

Rba     a , b R

and Ra    a  R , R  

(ii) The set of complex numbers over the field of real numbers.

Let the set be C be the set of complex numbers, then,

21 cc  C  a , b C

and Rc    c  C , C

(iii) The set of quadratic polynomials over the complex field.

Let this set be P. Then 1

2

1

2

11 cxbxaP  and 2

2

2

2

22 cxbxaP  are

in P, where 212121 ,,,,, ccbbaa are constants. 

2

2

2

2

21

2

1

2

1 cxbxacxbxa 

)()()( 2121

2

21 ccxbbxaa    P  1P , 2P   P 

 )( 11

2

1 cxbxa  P   1P P,  the complex field.

2. Check whether the following vectors are linearly independent.

(i) kji  32 , kji 3 and kji  23




































































 0

0

0

1

2

3

3

1

1

1

3

2

cba  

032  cba

023  cba  

03  cba

The solution set is (0, 0, 0), i.e., a = b = c = 0.

The vectors are linearly independent.

Alternatively, 

)19(3)23(1)61(2

131

213

312







035305)5(2 

(ii) 








 i

i

22

1
, 









 ii 2

12
, 













i3

21
 and 













2

2

i

ii


























































 00

00

2

2

3

21

2

12

22

1

i

ii
d

i
c

ii
b

i

i
a

Expanding, 

02  idcbai (i) 

022  idcba (ii) 

032  idciba (iii) 

0222  dicibia (iv) 

Multiplying (i) by 2 and adding to (ii), 

05)21(  bia (v) 

Multiplying (iii) by i and adding to (iv) gives

032)21(  dicbi (vi) 

Multiplying (ii) by 2 and adding to (iii),

057)2(  idcbi (vii) 

Multiplying (vi) by 5i and (vii) by 3 and adding,

01510)21(5  idcbii (vi) 

01521)2(3  idcbi (vii) 

01510)105(  idcbi

01521)36(  idcbi

011)24(  cbi (viii) 

From (v) and (viii), c
i

ia
b

42

11

5

)21(







Hence, 

a
iiia

c
55

68

55

)42)(21( 





Substituting for b and c in equation (vi), 

 03
55

68
2

5

)21(
)21( 







 








 
 da

i
ia

i
i

da
i

a
i

3
55

1216

5

)43(







da
i

a
i

a
ii










55

129

165

6045

165

12164433
(ix) 

Putting b, c, d in (i),

0
55

912

55

68

5

)21(
2 













 
 a

i
ia

iia
ai

0
55

9

55

12

55

6

55

8

5

4

5

2


iaaaiaaia
ai

0
55

12

5

2

55

8

55

9

55

6

5

4
1 

















 aai

0
55

12228

55

964455






aai



0
55

26

55

18









ia . Hence, a = 0, meaning that b, c, and d are also 

zero. 

02  idcbai (i) 

022  idcba  (ii) 

032  idciba (iii) 

0222  dicibia  (iv) 

Check if 0

222

32

2211

12









iii

ii

i

ii

3. Show whether or not the set 





























1

1
,

1

1
 is a basis for the two-dimensional 

Euclidean space. 

For the set to be a basis, the vectors must be linearly independent. 
































0

0

1

1

1

1
ba

0ba , 0ba  

ba 

a and b do not have to be zero. Hence, the vectors are not linearly independent. 

Sketch the vectors and satisfy yourself that they are indeed linearly dependent: 

one can be got from the other because they degenerate into a line. 

Alternately, 

0
11

11






4. Find the coordinates of the vector 








 i2

21
 with respect to the basis 


























 

















10

01
,

0

0
,

01

10
,

10

01

i

i
. 



















 




























 10

01

0

0

01

10

10

01

2

21
d

i

i
cba

i

da 1 (i) 

icb 2 (ii) 

cib  2 (iii) 

dai  (iv)



Adding (i) and (iv): 

a
i




2

1

(i) – (iv):

d
i




2

1

(ii) + (iii):

b0

(iii) – (ii):

ci
i

 2
2

Hence, 





















 




























 10

01

2

1

0

0
2

01

10
0

10

01

2

1

2

21 i

i

i
i

i

i

5. Find the inner product of the following vectors:

(i) 


















2

2

i

 and 


















3

1

2

  iii 28622

3

1

2

22 


















(ii) 22 ix and ix 32  20  x . 

 
2

0

2
2

0

2 )32(*)2()32(*)2( dxixixdxixix

 
2

0

23 )6432( dxixxix

2

0

23
4

62
2









 ixxx

x
i

ii 12888 

i4

(iii) A , mnMB  if 











131

112
A  and 







 


131

211
B . 















































 















 

 

123111

329131

143212

131

211

11

31

12

)(),( TrTrBATrBA



8

320

582

353

















 

 Tr

6. Find the norm of the following:

(i) 


















3

1

2i

(ii) 22 ix , 10  x  (iii) 















 



213

312

211

D

(i) 

  14914

3

1

2

312 


















i

i

(ii) 

 
1

0

22
1

0

22 )2)(2()2(*)2( dxixixdxixix

5

21

5

1
4

5
4)4(

1

0

5
1

0

4 







 

x
xdxx

Norm = 
5

21

7. Normalise each vector in the set

































































1

2

1

,

4

0

2

,

3

2

1

. 

Norm of 
















3

2

1

 is 14941 

The normalised vector is 
















3

2

1

14

1
 

Similarly, 
















4

0

2

20

1
 and 

















1

2

1

6

1
 are normalised. 
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3.5.2 Symmetric Matrices 
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2.0 
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Introduction 

Orthogonal functions play an important role in Quantum mechanics. This is 

because they afford us a set of functions „which do not mix,‟ just the way you 

could resolve a vector in two dimensions in the x and y directions, respectively, 

with the unit vectors i and j. The dot product of the two unit vectors gives you 

zero. We would also like to resolve our vectors in some „directions.‟ Thus, you 

need to know about orthogonal and orthonormal functions. The orthonormal 

functions would form the possible states you can find a system. You know such 

states should not „mix.‟ In this Unit, you will learn about orthonormality and 

orthogonality; how to create an orthogonal and subsequently, an orthonormal set 

and expand a given function in terms of an orthonormal set. This would naturally 

lead to an analysis of the probability of finding a system in any of the states in the 

orthonormal set. This Unit also gives you an insight into some elements of matrix 

algebra. 

Objectives 

This Unit will equip you with the knowledge of: 

 Orthogonal functions

 Orthonormal functions

 Expansion of a given function as a linear combination of a set of

orthonormal functions (states).

 Recovering the coefficient of the expansion.

 Finding the probability of finding the system in a given state.

 Some elements of matrix algebra.



3.0 Main Content 

3.1 Definitions 

(i) We say 1v  and 2v in a vector space V are orthogonal if their inner product is 

zero, that is, 0),( 21 vv . 

(ii) Suppose there exists a linearly independent set  n

ii 1
 , i.e.,  n ,,, 21  , such 

that 0),( ji  , ji  , then,  n

ii 1
 is an orthogonal set.

(iii) If in addition to condition (ii) above, 1),( ii  , then, n

ii 1
 is an orthonormal

set.

For an orthonormal set, therefore, we can write ijji  ),( , where ij is the Kronecker

delta, equal to 0 if ji   and equal to 1 if ji  . 

As we have seen earlier, if any vector in the vector space, V , can be written as a linear 

combination 





n

i

iinn aaaa
1

2211 v 2.1 

then we say the space is spanned by the complete orthonormal basis  n

ii 1
 , where

mnnm  ),( 2.2 

If  n

ii 1
 is an orthonormal set, It follows that we can recover the coefficient of expansion

as follows: 

jij

n

i

i

n

i

iijj aaa  


),(),(),(
11

 v 2.3 

Moreover, 

 
 


n

i

iij

n

k

n

i

ik

n

i

ii

n

k

kk aaaaa
1

2

1 111

),(*),(),( vv 2.4 

If, in addition, the vector v is normalised, then 





n

i

ia
1

2
1 2.5 

Do you remember what you learnt about probability in Statistics? The sum of the 

probability for various possible events is unity. Thus, we can interpret the 
2

ia  as the 

probability that the system which has n possible states, assumes state i with probability 
2

ia . In other words, the probability that the system is in state i  is 
2

ia . 

3.2 Bra and Ket (Dirac) Notation 

We have written the inner product in the form ),(  . We could also write it in the form of 

a bra, | , and a ket, | . This is the Dirac notation. Putting the bra and the ket together 





       Odd function Even function 

Fig. … 

Some real-valued functions are odd, some are even; the rest are neither odd nor even. 

However, we can write any real-valued function as a sum of an odd and an even function.  

Let the function be )(xh , then we can write 

)()()( xgxfxh  2.11 

where )(xf is odd and )(xg is even. Then, )()( xfxf   and )()( xgxg 

)()()()()( xgxfxgxfxh  2.12 

Adding equations (2.11) and (2.12) gives

)(2)()( xgxhxh 

Subtracting equation (2.12) from equation (2.11) gives 

)(2)()( xfxhxh 

It follows, therefore, that

2

)()(
)(

xhxh
xf


 2.13 

and 

2

)()(
)(

xhxh
xg


 2.14 

Example 

Write the function xexh x sin)( 2 as a sum of odd and even functions.

Solution 

xexh x sin)( 2 , xexexh xx sin)sin()( 22  

Therefore, the odd function is 

x
eexexexhxh

xf
xxxx

sin
22

sinsin

2

)()(
)(

2222  








xxsin2cosh  

The even function is 

x
eexexexhxh

xg
xxxx

sin
22

sinsin

2

)()(
)(

2222  








xxsin2sinh  

It is obvious that the odd function is a product of an odd function and an even function. 

Likewise, the even function is a product of two odd functions. We conclude, therefore, 

that the following rules apply: 

EvenEven = Even 2.15 

EvenOdd = Odd 2.16 



OddOdd = Even 2.17 

The integral 

 
a

a
dxxf 0)( if )(xf is odd  2.18 

 


a

a

a

dxxfdxxf
0

)(2)(  if )(xf  is even 2.19 

Recall that the inner product in the space of twice integrable complex valued functions of 

two complex valued functions )(xf and )(xg  over the interval bxa  is defined as 


b

a
dxxgxfgf )()(*),( . 

Two functions )(xf and )(xg  are said to be orthogonal over an interval bxa   if 

their inner product is zero. 

Example 

Show that mxsin  and nxsin  are orthogonal, nm  ,   x . 

Solution 

The inner product is  









dxxnmxnmnxdxmx ])cos()[cos(

2

1
sinsin






























xnm
nm

xnm
nm

)sin(
1

)sin(
1

2

1
= 0 

3.4 Gram-Schmidt Orthogonalisation Procedure 

This provides a method of constructing an orthogonal set from a given set. Normalising 

each member of the set then provides an orthonormal set. The method entails setting up 

the first vector, and then constructing the next member of the orthogonal set by making it 

orthogonal to the first member of the set under construction. Then the next member of the 

set is constructed in a way to be orthogonal to the two preceding members. This 

procedure can be continued until the last member of the set is constructed. 

3.4.1 Example from function vector space 

Construct an orthonormal set from the set  ,...,,1 2xx  over the interval 11  x . Thus, 

given the set  ,...,, 321 fff , we want to construct an orthogonal set  ,...,, 321  , i.e.,


1

1
)()( dxxx ji  = 0, if ji  , then we normalise each member of the set.

Let 111  f , and   xf 122  

Then, we determine  , subject to 

0),( 21 









1

1

1

1

1

1

2

0
2

)(1 x
x

dxx  2.20 

0

Thus, x2

Let   xxf 2

1233  

subject to 0),( 31   and 0),( 32   

The first condition gives: 

dxxx )(1 2
1

1
  = 0 2.21 

or 
1

0

2
1

1

1

1

2
1

1

3

2
3

2

23
x

x
x

xx









 = 0 2.22 

02
3

2
  2.23 

or 

3

1
 2.24 

The second condition gives 

 


1

1

232
1

1
)()( dxxxxdxxxx 

or 

0
234

1

1

2
1

1

3
1

1

4





xxx 
2.25 

0
3

2
1

0

3


x

or 

0 2.26 

Putting the values of   and    from equations (2.24) and (2.26) into the expression 

  xxf 2

1233 , we arrive at 

3

12

3  x 2.27 

54 , , etc., can be got in a similar fashion. 

To normalise j , we multiply the function by a normalisation constant, A , say, and

invoke the relation 

 
1

1

22 1)( dxxA j 2.28 



For 1 , this becomes

dxAdxA  


1

0

2
1

1

22 21 = 1 

from which 

12 2 A
or 

2

1
A

The normalised function 

2

1
1  2.29 

Similarly, 

1
1

1

22  dxxA

1
3

2
3

1

3

1

3

2

2

1

1

3

2 











A
A

x
A

Thus, 
2

32 A . 

Hence, the normalised function,  

x
2

3
2 

In like manner, 

dxxxAdxxA 
















  9

1

3

2
2

3

1 24
1

0

2
1

1

2

22 = 1 

from which 

1
99

2

5
2

1

0

35
2 

xxx
A

or 

1
9

1

9

2

5

1
2 2 








A

Therefore, 1
45

80 2 A

The normalised function 









3

1

8

45 2

2 x

3.4.2 Example from 
nR

We define the projection operator 



u
uu

vu
vu






,

,
Proj 2.30 

11 vu  2.31 

222 1
Pr vvu u 2.32 

3333 21
PrPr vvvu uu  2.33 

. 

. 







1

1

Pr
n

i

nnn i
vvu u

2.34 

We can then normalise each vector 

|||| k

k

k
u

u
e  2.35 

Note that vuPr projects vector v orthogonally onto vector u. 

3.5 Some Useful Mathematics on Matrices  

You shall be needing the following because we often represent an operator in quantum 

mechanics by a matrix. We shall take as the usual basis in 3-dimensional space, { 1e , 2e , 

3e }. You may also see this basis as {i, j, k}.

3.5.1 Orthogonal Matrices 

A tensor Q  such that babQaQ  )()(    Eba , is called an orthogonal matrix. 

Since }){()}({)()( aQQbaQQbbQaQ TT  , a necessary and sufficient condition for 

Q  to be orthogonal is 

IQQT  2.36 

or equivalently, 
TQQ 1 2.37 

Note that 

)det()det()det( TT QQQQ 

)det()det( QQ

  1)det(
2
 Q

1)det(  Q 2.38 

Q is said to be a proper orthogonal matrix if 1)det( Q  and an improper orthogonal 

matrix if 1)det( Q . 

If 1)(det Q , then 

)det()det()det( TQIQIQ 

)det( TT QQQ  ( )det()det()det( ABBA  for any 2 square matrices) 



)det( TQI  ( IQQT  for an orthogonal matrix Q)

)det( TTT QI  ( TAA detdet  for any square matrix A.)

     )det( QI   ( II T   and IQTT  ) 

     )det( IQ   ( )det()det( AA   for any square matrix A.) 

     0    (if a number is equal to its negative, it must be zero) 

Therefore, 1 is an eigenvalue so that 3e  33 ee Q . 

Choose 1e , 2e to be orthonormal to 3e . In terms of this basis, 



















100

0

0

dc

ba

Q 2.39 



















100

0

0

db

ca

QT 2.40 









































100

0

0

100

010

001
22

22

dcbdca

bdacba

QQT  2.41 

2222 1 dcba  2.42 

bdcabdac  0 2.43 

Also,  

bcadQ 1)det( 2.44 

From equation 2.43, 
d

ac
b 

Putting this in 2.43 gives 

1
2


d

ac
ad 2.45 

ddca  )( 22 da  Use equation 2.43 in equation 2.42 to get bc  . 

Therefore, 



















100

0

0

ab

ba

Q 2.46 

with 122  ba . 

Thus,  ,   cosa , sinb , 

so 





















100

0cossin

0sincos





Q 2.47 

If you represent the three unit vectors in 3-dimensional Euclidean space by i, j, k, this 

corresponds to a rotation about an axis perpendicular to k . 

3.5.2 Symmetric Matrices 

For a symmetric matrix A, TAA 

Choose 321 ,, eee as eigenvectors of A , with eigenvalues 321 ,,  . 

kkkA ee  2.48 

jkjkk A eeee  )( 2.49 

j

T

k A ee 

jk Aee 

      )( jkj ee   . 

This means that if kj   , then 0 jk ee  

Choose 321 ,, eee  to be unit vectors, then, ijji ee . 

This means that we could represent a symmetric matrix as a diagonal matrix with only 

the entries iiiA  : 



















3

2

1

00

00

00







A 2.50 

This result is referred to as the spectral representation of a symmetric matrix. 

3.5.3 Hermitian Matrices  

The Adjoint (or Hermitian conjugate) of a matrix A  is given by 

 *)()( TAAAAdj   2.51 

A Hermitian matrix is the complex equivalent of a real symmetric matrix, satisfying 

AA  2.52 

3.5.4 Unitary Matrices 

The complex analogue of a real orthogonal matrix is a unitary matrix, i.e., IAA  or,

equivalently,
1  AA 2.53 

3.5.5 Normal Matrices 

A normal matrix is one that commutes with its Hermitian conjugate. 

i.e.,

AAAA   2.54 



4.0 Conclusion 

This Unit introduced you to the concepts of orthogonality and orthonormality. They are 

so important in Quantum mechanics in that when in place, they guarantee that different 

vectors lie in specific directions that do not „mix up‟ just the way the traditional unit 

vectors in 3-dimensional space do not „mix up‟ when resolving them. You also came 

across the bra and ket or Dirac notation, another way of dealing with vectors and their 

inner products. Odd and even functions were brought in to make it easier for you to 

integrate functions within symmetric intervals. You also learnt about different types of 

matrices. With Gram-Schmidt orthonormalisation you have a way of creating an 

orthonormal set of vectors. With an orthonormal set, we can proceed to define the 

statistical probability with which a measurement of a physical quantity would result in a 

certain value. You also learnt about certain kinds of matrices. 

5.0 Summary 

 The inner product of a pair orthogonal vectors is zero.

 A basis that consists of orthogonal vectors only is an orthogonal basis.

 With an orthogonal basis, we can define the probabilities of measurement.

 The Gram- Schmidt orthonormalisation scheme can be used to create an

orthogonal basis.

6.0 Learning Activity
1. Which of the following functions are even and which ones are odd?

(i) xxx coshsin2 (ii) xe x 2cosh|| (iii) xsec

2. Write the following as a sum of odd and even functions.

(i) xe x cosh (ii) xx ln

3. Evaluate the following integrals

(i) 


a

a

n dxx 12 , ....,2,1,0n  (ii) 
a

a

ndxx 2 , ....,2,1,0n  

4. Show that

(i) mxsin and nxcos are orthogonal,   x . 

(ii) mxsin and nxsin are orthogonal, nm  ,   x . 

5. If the matrix 








21

3 x
 is a proper orthogonal matrix, find x. 

6. If the matrix 








 2i

iy
 is Hermitian, find the value of y. 

7.0 References/Further Readings 

1. Mathematical Physics – Butkov, E.

2. Mathematical Methods for Physics and Engineering – Riley, K. F.,

Hobson, M. P. and Bence, S. J.



Solutions to Learning Activity

1. Which of the following functions are even and which ones are odd?

(i) xxx coshsin2 (ii) xe x 2cosh|| (iii) xsec

(i) is odd, being the product of two even functions and an odd function.

(ii) is an even function, a product of two even function.

(iii) is an even function:

x
xx

x sec
cos

1

)cos(

1
)sec( 




2. Write the following as a sum of odd and even functions.

(i) xe x cosh (ii) xx ln

(i) xexh x cosh)(  , xexexh xx cosh)cosh()( 








 







2
cosh

2

coshcosh
)]()([

2

1
)(

xxxx ee
x

xexe
xhxhxf

xxsinhcosh








 







2
cosh

2

coshcosh
)]()([

2

1
)(

xxxx ee
x

xexe
xhxhxg

x2cosh

3. Evaluate the following integrals

(i) 


a

a

n dxx 12 , ....,2,1,0n  (ii) 
a

a

ndxx 2 , ....,2,1,0n  

(i) 


a

a

n dxx 12 = 0, the integrand being an odd function. 

(ii) 
a

a

ndxx2


a

ndxx
0

22

a
n

n

x

0

12

12
2






12
2

12






n

a n

4. Show that

(i) mxsin and nxcos are orthogonal,   x . 

(ii) mxsin and nxsin are orthogonal, nm  ,   x . 

(i) 0cossin  dxnxmx



, the integrand is an odd function 

(ii)   









dxxnmxnmdxnxmx )cos()cos(

2

1
sinsin

     0)sin(
1

)sin(
1

2

1































xnm
nm

xnm
nm

5. If the matrix 








21

3 x
 is a proper orthogonal matrix, find x. 
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21

3
det 








x

x
, or 5x  

6. If the matrix 








 2i

iy
 is Hermitian, find the value of y. 

The matrix is Hermitian if it is equal to its Hermitian adjoint, i.e., 

is 

*

2 



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
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
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
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
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
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

T
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iy
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





 2i

iy





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












 

























 222

*
*

i

iy

i

iy

i

iy
T

The matrix is Hermitian. 



UNIT 3: OPERATORS AND RELATED TOPICS 

1.0 

2.0 



3.0 

4.0 
5.0 
6.0 
7.0 

1.0 

2.0 

Introduction 

Objectives 

At the end of this Unit, you should be able to: 

Main Content 

3.1 Linear Operators 

3.1.1 Eigenvalues of a Linear Operator 

3.2 Expectation value 

3.3 Commutators and simultaneous eigenstates 

3.4 Matrix Elements of a Linear Operator 

3.5 Change of Basis 

Conclusion 

Summary 

Learning Activity
References/Further Readings 

Introduction 

Operators are quite important in Quantum mechanics because every observable is 

represented by a Hermitian operator. The eigenvalues of the operator are the 

possible values the physical observable can take, and the expectation value of the 

observable in any particular state is the average value it takes in that particular 

state. Commuting operators indicate that the corresponding physical observables 

can have the same eigenstates, or equivalently, they can both be measured 

simultaneously with infinite accuracy. You shall get to learn about all these in this 

Unit. 

Objectives 

At the end of this Unit, you should be able to do the following: 

 Define a linear operator.

 Find the eigenvalues of a linear operator.

 Calculate the expectation value of a physical observable in a given state.

 Do commutator algebra.

 Find the matrix elements of a linear operator.

 Write the matrix for a change from one basis to another.

3.0 Main Content 

3.1 Linear Operators 

A linear map, or linear transformation or linear operator, is a function YXf :  

between vector spaces X  and Y  which preserves vector addition and scalar 

multiplication, i.e., 

)( 21 xxf  = )()( 21 xfxf 

)( xf  = )(xf for K , a constant, and 21, xx X

Equivalently, )()()( 2121 xbfxafbxaxf  . 



As am example, the differential operator is a linear operator. 

)()())()(( 2121 xf
dx

d
xf

dx

d
xfxf

dx

d
 

where   and   are constants (scalars) in the underlying field. 

3.1.1 Eigenvalues of a Linear Operator 

Let A  be an operator and   the associated eigenvalue corresponding to an eigenvector 

 . Then, we can write

 A 3.1 

Frequently, the operator A  is a matrix, and the eigenvector   a column matrix. It 

follows that  

0)(   IA 3.2 

where I is the appropriate identity matrix, that is, a square matrix that has 1 along its 

main diagonal and zero elsewhere.

For a non-trivial solution, we require that the determinant vanish, that is, 

0 IA  3.3 

Solving the resulting characteristic (or secular) equation, we obtain the possible values of 

 , called the eigenvalues. Then armed with the eigenvalues, we can then obtain the

associated eigenfunctions.

Example 

Given the matrix 






 

21

23
, find the corresponding eigenvectors and the eigenvalues. 

Solution 

Let the eigenvector be 









2

1

u

u
u , and the corresponding eigenvalue be  . Then,

























 

2

1

2

1

21

23

u

u

u

u


or 

0
10

01

21

23

2

1





































 

u

u


which implies 

0
21

23










or 02652  

0852  



2

7

2

5

2

32255 i



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Let 1 =
2

7

2

5
i . Then, the corresponding eigenvector can be found: 







































 

2

1

2

1

2

7

2

5

21

23

u

u
i

u

u
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2

7

2

5
23 uiuu














 (i) 

221
2

7

2

5
2 uiuu
















From (i), 1112
2

7

2

1

2

7

2

5
32 uiuiuu































Thus, choosing 1u = 1, we get 2u =















2

7

2

1

2

1
i

Hence, an eigenfunction for the matrix is 








 71

1

i

Similarly, choosing 









2

1

v

v
v  as the other eigenvector with a corresponding eigenvalue 

2

7

2

5
2 i , we can get the eigenvector 










2

1

v

v
v . 

Central to the theory of quantum mechanics is the idea of an operator (as we have seen 

earlier). We have indeed come across some operators. Recall  

)()(ˆ xExH   3.4 

where Ĥ  is an operator. For the time-independent Schroedinger equation: 

)()(
)(

2
)(ˆ

2

22

xxV
dx

xd

m
xH 


 


3.5 

Ĥ is the total energy operator or Hamiltonian.  

We identify some other operators: 

(i) The kinetic energy operator T̂

2

22

2
ˆ

dx

d

m
T


 3.6 

(ii) The linear momentum operator p̂



dx

d
ip ˆ 3.7 

(iii) The position operator x̂

xx ˆ 3.8 

3.2 Expectation value 

The expectation value of a quantity is the statistical predicted mean value of all 

measurements.  

The (statistical) average value of the numbers 1x , 2x , …, nx is 




n

i

ix
n

x

1

1
. However, if 

there is a distribution, such that there are if of the value ix , i = 1, 2, …, n , then the 

average becomes 










 
n

i

iim

i

i

m

i

ii

xf
n

f

xf

x
1

1

1 1
, since nf

m

i

i 
1

3.9 

since n is the total number of observations. 

In the case of quantum mechanics, the average value, or expectation value, of an operator 

is 






 dxxx )())((*  3.10 

Thus, the expectation value of x  is 






 dxxxxx )()(*  3.11 

Thus, if 









L

x

L




2
sin

2
, with n = 2, and Lx 0 , 


L

dx
L

x
x

L

x

L
x

0

2
sin

2
sin

2 
3.12 

= 
L

dx
L

x
x

L 0

2 2
sin

2 

          = 
24

2 2 LL

L


The expectation value of the momentum for the same case above is 














 dxx

dx

d
ixp )()(*   3.13 

=  






L

dx
L

x

dx

d

L

x

L

i

0

2
sin

2
sin

2 



         = 
L

dx
L

x

L

x

LL

i

0

2
cos

2
sin

22 

         = 
L

dx
L

x

LL

i

0

4
sin

2

122 

         = 

L

L

xL

L

i

0

2

4
cos

4

2 







= 0 

The energy expectation value of for the ground state of the simple harmonic oscillator: 

 




















 00

*

0000

*

00

*

0
2

1

2

1

2

1ˆ   dxdxHE 3.14 

since 0 is normalised.

This is a special case of the general result 

  








dxdx *ˆ* 3.15 

Thus, we see that for any eigenstate of an operator, the expectation value of the 

observable represented by that operator is the eigenvalue.  

More generally, we would write the expectation value of an operator, A, in a certain state 

 , as

  || A . 

Example 

The expectation value of a matrix operator, 










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







231
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

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2i
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3.3 Commutators and simultaneous eigenstates 

Consider an operator P̂  that represents a physical observable of a system, e.g., energy or 

momentum. Suppose that the state   has a particular value p  of this observable, i.e., 

 pP ˆ . Suppose further that the same state also has the value q of a second 

observable represented by the operator Q̂ , i.e.,  qQ ˆ . Then p and q are called

simultaneous eigenvalues. Then,

 pqQppQPQ  ˆˆˆˆ 3.16 

Similarly, 



 qpPqqPQP  ˆˆˆˆ 3.17 

Since p  and q  are just real numbers, then pqqp  . Thus, the condition for 

simultaneous eigenstates is that  PQQP ˆˆˆˆ   or

0ˆˆˆˆ  PQQP 3.18 

PQQP ˆˆˆˆ  is said to be the commutator of P̂ and Q̂ and operators that satisfy the 

condition 0ˆˆˆˆ  PQQP  are said to commute. The commutator is normally written 

]ˆ,ˆ[ QP . 

Examples 

1. Show that ]ˆ,ˆ[ pT .

]ˆ,ˆ[ pT =  



























2
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mdx

d
i

dx

d
i

dx

d

m






 = 0
22 3

33

3

33


dx

d

m

i

dx

d

m

i  

2. Calculate ]ˆ,ˆ[ px .

)(]ˆ,ˆ[  x
dx

d
i

dx

d
ixpx 

















 

 = 
dx

d
xii

dx

d
xi





 

 = i  

Thus, we can write ]ˆ,ˆ[ px = i

The fact that x̂  and p̂  do not commute lead to the uncertainty relation  px . 

Indeed, when two operators do not commute, it means that the two associated 

observables cannot be measured with infinite accuracy simultaneously. Thus, an attempt 

to measure the momentum of a particle with infinite accuracy will cause an infinite error 

in the position as is easily seen in the equation, 
p

x





. On the other hand, the 

momentum and the energy of such a system can be measured simultaneously with infinite 

accuracy. Other non-commutating operators include Ê  and t̂ , i.e., the energy operator 

and the time operator. 

The potential operator is just VV ˆ , just as xx ˆ .

3.4 Matrix Elements of a Linear Operator 

We can represent any operator A  by a square nn matrix 



 jiij AA  || , i, j = 1, n 3.19 

Examples 

1. For the identity operator I ,

 iiI  ||

 jiij AA  || =  jiijA  | = ij 3.20 

Hence, 
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

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I 3.21 

2. Consider the basis



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

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B . Suppose we want to change to 



































































1

0

0

,

0

1

0

,

0

0

1

C . Then, the matrix of transformation is 
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
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Aij



3.5 Change of Basis 

The basis for a vector space is not unique. We can easily construct a linear map (matrix) 

that takes a basis vector in one basis to another, as seen in example 2 above. Let us 

consider nR as a vector space.

Let n

ii 1}{ u  be a basis in the vector space. We can write any vector a in the vector space 

as 
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It follows that 

12121111 ... nnucucuca 

22221212 ... nnucucuca 

. 

. 

nnnnnn ucucuca  ...2211

We can write this compactly as 
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or 
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where B is a matrix formed by arranging the vectors 1u , 2u , …, nu in order.

It follows immediately that we can write 
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But we might as well have written a in another basis n

jj 1}{ v , as 
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Therefore, equation 3.25 becomes 
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2

1

1

2

1

 3.27 

Conversely, 























nd

d

d

.

.

2

1

= BD 1























nc

c

c

.

.

2

1

3.28 

Example 1 

Given the basis {(2, 3), (1, 4)}, can we write the expression for a transformation to {(0, 

2), (-1, 5)}? 

Solution 











43

12
B , 







 


52

10
D , 














23

14

5

11B , 











02

15

2

11D



 DB 1 












23

14

5

1







 

52

10
= 







 

134

92

5

1

BD 1 = 








 02

15

2

1









43

12
= 









 24

913

2

1




































 

6

2

24

913

2

1

2

11

2

1

c

c
BD

d

d
= 









 4

28

2

1
= 









 2

14

Check! 


















 

















 

2

14

134

92

5

1

2

11

2

1

d

d
DB

c

c
= 









30

10

5

1
= 









6

2

4.0 Conclusion 

Linear operators are so important in Quantum mechanics because every observable has 

an associated linear operator. So, we introduced you to linear operators, and then outlined 

how to get the eigenvalues and eigenvectors of a given linear operator. The eigenvalues 

are the possible values a measurement will yield, and the eigenstates are the possible 

states we can find the system. You also learnt about the expectation value of a physical 

observable represented by a linear operator. We then went on to discuss commutators and 

saw that simultaneous eigenstates are possible for a pair of operators if they commutate. 

You learnt, thereafter, to calculate the matrix elements of a linear operator. You might 

need to change from one set of basis to another. You also learnt how to do this, so that 

you might have a picture of what a vector in the space would look like in another basis. 

5.0 Summary 

 A linear operator is needed for each physically observable physical quantity in

Quantum Mechanics.

 The eigenvalues of an operator are the possible values a measurement of the

physical observable will yield.

 The eigenstates or eigenvectors of an operator are the possible states in which the

system under consideration could be found.

 The matrix representing a linear operator can be determined.

 The basis for a certain vector space is not unique as we can construct more bases

as may be needed.

6.0 
1a. 

Learning Activity
Find the eigenvalues and the corresponding eigenfunctions of the matrix.



















001

000

100

A



b. If this matrix represents a physically observable attribute of a particle, what is the

expectation value of the attribute in each of the possible states. Comment on your

results.

2. You are given the set



























1

1
,

1

1
1S . 

(a) Are the linearly independent?\

(b) Are they orthogonal?

(c) Are they normalised? If not, normalise them.

(d) Write the vector 








4

3

(i) in terms of the usual basis in the Euclidean plane.

(ii) In terms of the basis




























1

1
,

1

1
US . 

(e) Write the matrix of transformation from basis US to basis 1S ?  

3. Find the matrix of transformation between the bases 

























1

0
,

0

1
 and 



























1

1
,

1

1
. Hence, express the vector 









4

3
 in the two different bases. 

4. Write the matrix of transformation between the following bases in 3R , the 3-

dimensional Euclidean plane.

































































5

3

0

,

0

1

2

2

0

1

 and 


































































1

1

1

,

1

1

2

1

2

1
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Solutions to Learning Activity

1a. Find the eigenvalues and the corresponding eigenfunctions of the matrix. 



















001

000

100

A

b. If this matrix represents a physically observable attribute of a particle, what is the

expectation value of the attribute in each of the possible states. Comment on your

results.

a. The characteristic equation is formed by 0

01

00

10















03  

Eigenvalues are 0, 1 and 1 . 

For  = 0, eigenvector is given by 

































3

2

1

001

000

100

a

a

a

Or 



































0

1

0

3

2

1

a

a

a

The normalised eigenfunction is 





































0

1

0

3

2

1

1

a

a

a



1 : 

























































0

0

0

101

010

101

3

2

1

a

a

a



































1

0

1

3

2

1

a

a

a

The normalised wavefunction is 





































1

0

1

2

1

3

2

1

2

a

a

a



1 :



















































0

0

0

101

010

101

3

2

1

a

a

a





































1

0

1

3

2

1

a

a

a

Normalised wavefunction is 





































1

0

1

2

1

3

2

1

3

a

a

a



b. The expectation value of A in state

















1

0

1

 is 

    0

0

0

0

010

0

1

0

001

000

100

010|| 11 



















































  A

 


































1

0

1

2

1

001

000

100

101
2

1
|| 22  A   12

2

1

1

0

1

101
2

1




















    12
2

1

1

0

1

101
2

1

1

0

1

2

1

001

000

100

101
2

1
|| 33 





















































  A

Comment: The expectation values are the eigenvalues we got earlier. This is 

another way of getting the eigenvalues of an operator. 

2. You are given the set



























1

1
,

1

1
1S . 

(f) Are the linearly independent?\

(g) Are they orthogonal?

(h) Are they normalised? If not, normalise them.

(i) Write the vector 








4

3

(i) in terms of the usual basis in the Euclidean plane.

(ii) In terms of the basis




























1

1
,

1

1
US . 

(j) Write the matrix of transformation from basis US to basis 1S ?  



Solution 

(a) Given a set  n

ii 1
v , if we can write nnaaa vvv  2211  = 0 and this 

implies naaa  21 = 0, then we say  n

ii 1
v  is a linearly 

independent set. 

a= 








1

1
, b= 









1

1

To check if they are linearly independent. 





















1

1

1

1
21 cc = 









0

0

Hence, 021  cc and 021  cc . From the last equation, 21 cc  . 

Putting this in the first equation, 011  cc , or 1c = 0. Consequently, 2c = 

0. Set is linearly independent.

(b) To check orthogonality, 











1

1
)11(),( baba

T = 1 – 1 = 0 

(They are orthogonal) 

(c) Are they normalised? 2
1

1
)11(),( 








aa , or 2|||| a . 

2
1

1
)11(),( 










bb .

They are not normalised. 










1

1

2

1
, 









1

1

2

1
 are normalised. 

The set { 








1

1

2

1
, 









1

1

2

1
} forms an orthonormal basis for 2R .  

In the usual basis US , 




























1

0
4

0

1
343

4

3
ji

In the basis 1S






























1

1

21

1

24

3 

Hence, 23   and 24 

272  and 22 

Therefore, 






























1

1

22

2

1

1

22

27

4

3
= 




















1

1

2

1

1

1

2

7



3. Find the matrix of transformation between the bases 

























1

0
,

0

1
 and 



























1

1
,

1

1
. Hence, express the vector 









4

3
 in the two different bases. 

The matrix from basis US is 









10

01
B , and the matrix from basis 1S is 













11

11
D , 










10

01
1B , 



























11

11

2

1

11

11

2

11D

The matrix of transformation from US to 1S is 











11

11
1 DDB . 

The matrix of transformation from 1S to US is 









 

11

11

2

111 DBD

So, 








4

3
in US transforms to 


















































2

2/7

1

7

2

1

4

3

11

11

2

1

4

3
1BD in 1S . 

Crosscheck! Does this transform into 








4

3
 the other way? 










 2

2/7
 in 1S transforms to 

































































4

3

8

6

2

1

1

7

11

11

2

1

1

7

2

11DB in US . 

4. Write the matrix of transformation between the following bases in 3R , the 3-

dimensional Euclidean plane.

































































5

3

0

,

0

1

2

2

0

1

 and 


































































1

1

1

,

1

1

2

1

2

1

Let aS

































































5

3

0

,

0

1

2

2

0

1

, and bS


































































1

1

1

,

1

1

2

1

2

1

The matrix related to aS is



















502

310

021

B , while the one related to bS is 





















111

112

121

. 

We need to get the inverse of D , since we need BD 1 . The inverse of a matrix is the 

matrix of cofactors divided by the determinant. First, we evaluate the determinant of D. 

Determinant of D is 



9)12(1)12(2)11(1 

The inverse of D is the transpose of the matrix of cofactors divided by the determinant:






















































































513

123

330

9

1

513

123

330

9

1

12

21

12

11

11

12

11

21

11

11

11

12

11

12

11

12

11

11

9

11

T

T

D













































































100

010

001

900

090

009

9

1

513

123

330

111

112

121

9

1

We have got the inverse right, IDD 1 . The matrix of transformation from 

of transformation from  to bS is, and that of transformation from aS to bS is  





































502

310

021

513

123

330

9

11BD





















1277

145

2436

9

1



                                                                                  

2.6 Schrodinger’s Equations 

 

Schrodinger derived a mathematical equation to describe the dual nature 

of mater waves. Newton’s law of motion is applied only to macroscopic 

particles. But this equation is used for both macroscopic and 

microscopic particles. The equation in mathematical form is known as 

Schrodinger’s wave equation. There are two forms of Schrodinger wave 

equations. 

(i) Time independent wave equation 

(ii) Time dependent wave equation 

 

Schrodinger time independent wave equation 

 Schrodinger derived the equations of matter waves by making 

the following assumptions. 

 

(i) deBroglie wavelength can be applied for any particle moving 

in any field of force. 

          The total energy for a particle ‘E’ = P.E + K.E 

                                   

2

2

2

1

2

1

2

2( )

E V mv

E V mv

E V mv

= +

− =

− =  

           

  Multiply by ‘m’ on both sides, we get 

                              2m (E-V) = mv2 --------------- (1) 

                      

                       p2 = 2m (E-V)                                    p = mv 

                            

                            p = [2m(E – V)]½ 

        

 deBroglie wavelength  λ   =   h/p 

              
1/ 2[2 ( )]

h

m E V
 =

−  



(ii)      The wave function associated with the material particles in 

time‘t’ can be written as, 

                                            0

iwte  −=
--------------- (2)  

Where, 


 is the amplitude of the wave function 

  

                2 =  where   is the frequency of radiation  

           

 Consider a particle of mass ‘m’ moving with a velocity ‘v’ 

whose wave length is given by   

h

mv
 =

. Let us find the wave nature 

of the system. 

  

The classical differential equation to this wave system is  

 

                      

2 2 2 2

2 2 2 2 2

1
.

x y z v t

      
+ + =

   
 

 

here, x, y, z  →  co-ordinates of the particle. 

                   → wave displacement for the de Broglie wave at any time 

‘t’. 

                 V → wave velocity 

  

The above equation can be written as,   

                      

2
2

2 2

1

v t





 =

  ----------------- (3) 

  where,             

2 2 2
2

2 2 2x y z

  
 = + +

  
 is the Laplacian operator. 

             

The solution for the equation (3) is, 



                                                                                  

                             ( ) ( ), , 0 , ,

i t

x y z x y z
e   −=

--------------- (4)  

 

Differentiating equation (4) twice with respect to time we get, 

 

         

0

2

02

2
2

02

2
2

2

( )

( )( )

(5)

i t

i t

i t

i e
t

i i e
t

e
t

t








 


  


 


 

−

−

−


= −




= − −




= −




= − − − − − − − − − − − − −

     

 
 tie

i

 −=

−=

0

2 1





         

 

For equations (3) and (5), 

                       

2
2

2
(6)

v




−
 = − − − − − − − − −

 

       But            

2 2


  


 
= =  

                                                         

or                      

2
(7)

v

 


= −−−−−−−−

 

 

Substituting equation (7) in equation (6) we get  

 

                     

2
2

2

2
2

2

4

4
. ., 0 (8)i e


 




 



−
 = 

 + = − − − − − − − − − − −
 

 



Equation (8) is a general equation. For introducing the wave nature, 

substitute the value 

h

mv
 =

 in the above equation. 

        i.e.,                 

( )

2
2

2

2 2

2 2 2
2

2

4
0

4
0 (9)

h
m v

m v

h


 


 

 + =

 + = − − − − − − − − − − −
 

 

Substituting the value of m2v2 from equation (1) in equation (9) 

                       

2 2

2

2
2

2

2 ( )
4 0 (10)

8
( ) 0 (11)

m E V

h

m
E V

h

  


 

−
 + = −−−−−−−−−−

 + − = −−−−−−−−−−−
 

This equation is known as Schrodinger’s time independent wave 

equation. 

 

For one dimensional motion, the above equation becomes,    

                                                            

                

2 2

2 2

8
( ) 0 (12)

m
E V

x h

 



+ − = −−−−−−−−−


    

                               Put 2

h
=

   

Therefore equation (12) can be written as, 

                           

 

 

 

                 

( ) 0
2

2

2 =−+  VE
m

  



                                                                                  

The above equation is the Schrodinger time independent wave equation 

in three dimension. 

For a free particle, the potential energy V = 0    

 

    Schrodinger wave equation for a free particle can be written as, 

                          

0
2

2

2 =+ 


mE

           

Schrodinger time dependent wave equation 

 When we eliminate ‘E’ from the Schrodinger time independent 

wave equation, we can easily get the Schrodinger time dependent wave 

equation. From Schrodinger second assumption, 

                                  ( ) ( ), , 0 , ,

i t

x y z x y z
e   −=

---------------- (1) 

Differentiating equation (1) with respect to time 

                                                                                                                                                                       

                
0 ( ) i ti e

t


  −

= −
  

Put   2 = hence, 
0(2 ) i ti e

t


  −

= −
  

   















−=





−=




h

E
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t

i
t

2

2

            








=

h

E


 

  












E
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t

h

E
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t
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


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


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







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                                                  t
iE
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E




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


−=











                     

Substituting the value of E  in Schrodinger’s time independent wave 

equation i.e., 
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The above equation is Schrodinger time dependent wave equation 

                                     

                                         
H E =

  

Where,  









+−= V

m
H 2

2

2



   is the Hamiltonian operator and 

             t
iE




=




    is the energy operator. 
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2.7  Application of Schrodinger wave equation  using one 

dimensional potential well 

 

Particle in one dimensional box 

 

                     V = ¥                      V = ¥  

 

 V = 0 

  electron 

                                  

 V = ¥               V = ¥ 

 

                          x = 0                            x = a 

 

 Consider a particle moving inside a box to and fro between two 

walls at x = 0 and x = a along the x-axis direction. When it collides with 

the wall there is no loss of energy of the electron, hence we can say the 

collisions are perfectly elastic. So there is no change in potential energy 

‘V’.  

 Hence, we can say the value of potential energy inside the box is 

zero. Here the walls are infinitely high so the particle cannot get out of 

the box; hence we can say outside to box the potential energy of the 

particle is infinite. 

 

                   Therefore, inside the well, 

 

              P.E   V = 0    for    0 < x < a     and 

              P.E   V = α    for    0 ≥ x ≥ a  

 

 

The particle cannot exist outside the box, so the wave function 

                         ψ = 0   for   0 ≥ x ≥ a  



       

The Schrodinger one dimensional time independent equation for a free 

particle is, 

                                 

0
2

22

2

=+









mE

x  

                                  

2
2

2
0k

x





+ =

  ------------- (1) 

              Where,         
2

2 2



mE
k =

   

 

The general solution for equation (1) is 

 

                   ψ = A sin kx + B cos kx ---------------- (2) 

 

For evaluating the constants A and B, use boundary conditions 

             x = 0 and x = a in equation (2) 

 

           ψ = 0 at x = 0,        i.e.,   0 = A sin k (0) + B cos(0)  

                                          i.e.,   B = 0 

 

           ψ = 0 at x = a,         i.e.,   0 = A sin k (a) + 0 

                                           i.e.,   A sin ka = 0 

 

Since the electron is present inside the box,  A ≠ 0 

            

So we can write,  sin (ka) = 0 

                             sin (ka) = 0  only  when  ka = n π 

                                                                       k = n π/a 

            But from (1)     

)4(
2

)3(

2

2 −−−−−−−−−−−=

−−−−−−−−−−−−=



mE
k

a

n
k



 

Equating the equations (3) and (4),                          



                                                                                  

 

  

  The energy of the particle  

2 2

28
n

n h
E

ma
=

                  


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




=

2
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        and the wave equation       

sinn

n x
A

a




 
=  

    

Each value of En is called Eigen value and the corresponding ψn is 

called Eigen function. 

             

A few energy level diagrams are shown in the fig. 
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Normalization of the wave function 

It is the process by which the probability of finding the particle inside 

the box can be done. 

 

Let us find the value of A.  Since the electron is present inside the box 

 

                                 

2
1n dx






+
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=
 

 

Substituting the value of ψn in the above equation we get,   

  

                                                                                                

   

 
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The second term of the above is zero 
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 The above equation is called normalized wave function. 

 



LEARNING ACTIVITY  

1. Derive the expression for Schrodinger equation  

2. Derive the expression for Normalized wave function 

3. What are the two assumptions of Schrodinger. 

 

Note: 

a) Write your answer in the space given below. 

b) Check the answer with your academic counsellor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                  

SUMMARY 

In this chapter, we studied the basic of the wave mechanics and quantum 

operator also studied about properties of wave function and schordinger’s 

equations and its applications. 

 

 



Block III 

 

Nuclear Physics 

 

STRUCTURE 

 

Overview 

Learning Objectives 

 

3.1 Introduction  

3.2 Classification of Nuclei  

3.3 General Properties of Nucleus  

3.4  Angular momentum and Dipole moments  

3.5 Binding Energy   

3.6 Packing fraction  

3.7 Nuclear stability  

3.8  Liquid Drop Model  

3.9 Shell Model. 

Summary 

 

 

OVERVIEW 

 

In this chapter on `Nuclear Physics’, we shall study the classification of 

Nucleus and general properties of nucleus. We shall also study the Term 

Binding energy, Packing fraction and stability of nucleus and detail 

study about Liquid drop model and shell model. 

 

 

 

LEARNING OBJECTIVES 



                                                                                  

 

After completing this Unit, you should be able to: 

 

• Classification and General properties of Nucleus  

• Binding energy and packing fraction of nucleus. 

• Formation of nuclear models. 

 

 

3.1 Introduction 

 

The -ray scattering experiments of Rutherford established the 

existence of the atomic nucleus.  We know make a general review of the  

constituents and general properties of nuclei.  Like the atom, the nucleus 

may also exist in different quantum states based on energies and angular 

momenta.  The state corresponding to the lowest energy is the ground 

state in which a nucleus normally exists.   We shall also assume that 

they are in the ground states and properties in such states are known as 

static characteristics of the neclei.  The dynamic characteristics are 

shown during nuclear reactions, nuclear excitations and nuclear decays.  

The important static properties are:  nuclear charge, nuclear mass, size, 

shape, binding energy, angular momentum, magnetic moment, statistics, 

etc. 

Constituents of nuclei 

With the discovery of neutron by Chadwick, it was recognised that the 

atomic nuclei are composed of two types of elementary particles – 

protons and neutrons.  Collectively, they are called nucliens.  A 

particular type or a species of nucleus, is called a nuclide. 

 The proton is identified as the nucleus of the lightest isotope of 

hydrogen.  It carries one electronic but positive charge, +e and has a 

mass mp of about 1836 times the electronic mass, me.   The neutron 

possesses no charge – electrically neutral and hence the name.  Its mass 

mn is almost equal to, but slightly more than, the mass of a proton i.e., 

mn  mp.  The negatively charged to electrons move around the nucleus 



and the orbits or the effects of the electrons extend to about 10-10 m, the 

radius of the atom.  The radius of a typical nucleus however is much 

smaller, about 10-14 m. 

 The atom is thus electrically neutral with a massive nucleus.  

The atomic mass distribution is such that most of its space is empty.  

The clouds of extra-nuclear electrons again are arranged in layers or 

shells.  The outermost or valence electrons dictate the chemical 

properties of the atom on which the effect of the nucleus is negligible. 

 By Coulomb’s law, the positively charged protons, closely 

spaced within the nucleus, should repel each other strongly to fly apart.  

To explain the nuclear stability, one must thus assume that nucleons are 

held, by a very strong short range attractive force, different from 

gravitation or electromagnetic force and is called strong interaction. 

 The number of protons in the nucleus determines the atomic 

number of the nuclide.  It is also called the Z-value or the proton 

number.  The number of neutrons in the nucleus is the neutron number, 

N.  The sum of the numbers of protons (Z) and neutrons (N) inside the 

nucleus, that is, the total number of nucleons in a nucleus, is known as 

its mass number A. 

    

  

 

 Obviously, the mass number A is an integer just as both N and Z 

are.  For a given Z, a change in neutron number N causes a change in 

the nuclear mass. 

 A nucleus of an atom X of atomic number Z and a mass number 

A, that is, a nuclide is symbolically represented by .  For instance, 

 is the nucleus of a helium atom of atomic number 2 and mass 

number 4 (an -particle).  The proton and neutron are symbolically 

written as p and n. 

 

 

 

A = N + Z N = A - Z 
 



                                                                                  

3.2 Classification of Nuclei 

  

Isotopes, isobars, isotones and mirror nuclei 

 

Isotopes:  

  Nuclei with the same atomic number Z (i.e., same 

element), but different mass number A are called isotopes.  Thus, a 

given element of atomic number Z may have isotopes of different mass 

numbers.  Their nuclei have the same number of protons but different 

number of neutrons.  Thus 6Li and 7Li are two stable isotopes of lithium.  

Protons in the nucleus of each is 3 but their neutron numbers are 3 and 

4.  Similarly,  are all isotopes of carbon. 

 Isotopes were first discovered in naturally radioactive 

elements.  Thomson, while investigating positive rays by parabola 

method, found two stable isotopes of Neon-20Ne  and 22Ne.  Elements 

having stable isotopes contain in natural states a mixture of the isotopes 

in almost constant proportions – the so – called relative abundances (sec 

Appendix 2).  Hydrogen has two stable isotopes 1H and 2H of relative 

abundances 99.99% and 0.01% respectively.  The isotope 2H is called 

heavy hydrogen or deuterium (2D) and its nucleus deuteron.  Another 

isotope of hydrogen, which is unstable, 3H is called tritium and its 

nucleus triton.  Some elements like As, F, I and Au have a single 

isotope only.  All the isotopes of an element have identical chemical 

properties but they slightly differ in physical properties.  Isotopes that 

do not occur naturally can be produced by nuclear reactions. 

 

Isobars:   

 Nuclei with the same mass number A but different 

atomic number Z (i.e., different elements) are called isobars.  For 

instance, the two nuclides  and   are isobaric to each other.  Both 

have the same mass number A = 16 but Z = 8 for  and Z = 7 for 

. 



Isotones:  

 Nuclei with the same number of neutrons, that is, 

having the same N (no matter what the Z-value is), are known as 

istones.  The nuclides a and g are isotonic to each other, since 

both have 23-11 = 12 or 24 – 12 = 12 neutrons in the nucleus. 

Mirror nuclei :   

 The pairs of isobaric nuclei where the proton number Z 

and the neutron number N are interchanged and differ by one unit are 

known as mirror nuclei.  Examples are (  and  ), (  and  ), 

etc.  Their mass number is A = 2Z – 1 where Z is the higher atomic 

number of the members of the pair, the other member of the pair has the 

atomic number Z – 1.  The first member is usually  active and 

changes into the second by  transformation. 

 

 

3.3 General Properties of Nucleus 

 Nuclear size 

Nuclear radius:  It is difficult to define the size of nuclei since their 

spatial extent is ‘fuzzy’.  But experiments indicate that the majority of 

atomic nuclei are spherical or nearly so, in shape.   So, its volume is 

proportional to the total number of nucleons in it or its mass number A. 

   

  or,  R   

                                         

 

where R is the radius of the nucleus and ro, a constant, called nuclear 

radius to parameter.  The value of ro ranges from (1.1 to 1.5) x 10-15 m, 

i.e (1.1 – 1.5) fm and can be evaluated by a number of different 

methods. 

 ●  The nuclear radius, as discussed,  is the radius of nuclear 

mass distribution.  One may as well talk of the radius of nuclear charge 

R = ro  



                                                                                  

distribution.  Since nuclear charge parameter Z  A i.e., is almost 

linearly proportional to the mass number, and the nuclear charge density 

pc is nearly the same throughout the nuclear volume, the distribution of 

nuclear charge + Ze follows the pattern of nuclear mass distribution.  

Hence charge radius   mass radius, of the nucleus. 

 ●  The size of the nucleus was first estimated from Rutherford’s 

-ray scattering using various atoms.  The larger the angle of scattering 

of particle, closer is its approach to the nucleus.  If the kinetic 

energy of particle be equal to the repulsive Conlomb energy 

between particle (of charge 2e, mass m and velocity v) and the 

nucleus (of charge Ze) it would come momentarily to rest such that the 

distance of closet approach R is given by 

  =  R=  

 Substituting for m = 6.64  kg, e = 1.6 C and 

v=107 m/s, the value of R for Z = 20 is  1.5 m. 

 The mean squared radius  of nuclear charge distribution is 

given by 

   = =  =  

 For a uniformly charged sphere of radius R,  = charge density = 

constant and  = 0 for r > R. 

   

   

 Estimation of nuclear radius   Of the different methods generally 

used to estimate the nuclear radius, we shall describe here only two of 

them: (i) the mirror nuclei method and (ii) the muonic -ray method. 

 Mirror nuclei method – As already defined, the mirror are pairs 

of nuclei obtained from each other by the interchange of  neutron with 

proton, e.g. ( , ).  A mirror nucleus like  is unstable and is 

converted to  by positron ( +) emission. 

      + v 

    



Where v is the neutrino, a neutral particle of negligible mass. 

 If Z be the atomic number of the daughter nucleus, then it can be 

shown that the difference in Coulomb energies of mirror nucleus is  

    

Where R = the radius of the daughter nucleus. 

 The above energy is spent is providing (i) the rest mass energy 

mec
2 to produce positron, (ii) the kinetic energy  of the  particle 

and (iii) the rest mass (mn – mp)  required for conversion of a neutron 

of larger mass mn into a proton of small mass mp. 

    = mec
2  +  + (mn – mp)  

Whence R could be readily estimated. 

 The average value of R estimated by this method is (1.23  

0.03) m. 

  Muonic x-rays – The energies of x-rays emitted by muons are 

called muonic x-rays.   When a beam of muons, whose mass in 207 me 

and charge equal to e, is incident on nuclei like graphite, the muons 

move in Bohr’s quantized orbits.  Naturally, the orbit has a radius 207 

times smaller and energy 207 times greater than that of an electron.  

Muonic x-rays are produced when such -mesons are excited and de-

excited, the energies of such x-rays depend on the value of R, the 

nuclear radius and may be used to estimate the size of the nucleus. 

 The average value of R obtained by this method is (1.20 0.03) 

m. 

 ● The other important method for estimating R is the electron 

scattering method into which we are not entering here.  We shall 

highlight some of the important conclusions arrived at by a comparison 

of these methods in respect of atomic nucleus.  These are (i) the 

distribution of density of protons in the nucleus is slightly different from 

that of all the nucleons within the nucleus, (ii) the nuclear charge 

distribution is not spherically symmetric in some nuclei which possess 

electric quadrupole moment and (iii) the charge radius of a nucleus is 



                                                                                  

not significantly less than the radius of nuclear matter consisting of all 

the nucleons. 

 

Nuclear density: 

 Nuclear density – The nuclear density, N can be estimated from 

the relation 

  N =  

But the nuclear mass MN is approximately equal to AmN where A is the 

mass number and mN the mass of the nucleon 1.67 x 10-27 kg. 

 The nuclear volume, VN  =  R3 =   (r0   =  r . 

               N =  =  =  

 Using the relation (1.8.3) above, we have  

                              N  1.816 x  1017 kg /m3 

an unusually large number.  So, the nuclear matter is in a highly 

compressed state and the nuclear density is extremely high being 

comparable to that of some stars like the white dwarfs. 

 ● Since the atomic radius = 104 x nuclear radius, the atomic 

density,   N  2 x 1017 / (104)3  2 x 105 kg/m3 which is much smaller 

compared to pn.  The density of water, pw = 103 kg / m3 which is much 

smaller compared to pA. 

 ● As the density of nucleus is independent of A (Eq.1.8.3), its 

value is almost the same for all nuclei. 

Nuclear charge 

The charge of a nucleus is due to the protons present in it. Each proton 

has a positive charge equal to 1.6 × 10−19 C. 

∴ The nuclear charge = Ze, where Z is the atomic number. 
 

 

3.4 Angular momentum of nucleus:  Nuclear spin 

 



While studying Bohr’s theory of atom, we observed that the 

corresponding atomic states of the isotopic nuclides do not possess the 

same energy.  This is because the reduced mass of the electron depends 

on the nuclear mass.  This isotopic shift apart, each atomic energy level 

with a given value of J shows a splitting even when a single isotope of 

an element is taken.  This splitting, which is finer than the fine structure 

splitting, is referred to as hyperfine structure of the level, observed only 

when a high resolution interferometer is used.  The spinning property of 

an electron was introduced to explain the doublet structure of the alkali 

spectra.  In a like fashion.  Pauli suggested in 1924 that the hyperfine 

structure could be explained if we assume that the nucleus of the atom 

possesses an angular momentum of spin with an associated magnetic 

moment. 

 The methods employed to study the angular momentum of spin 

and the magnetic moment of nuclei are based on (i) the hyperfine 

structure of spectral lines, (ii) alternating intensities in homouclear 

molecular spectra, (iii) microwave spectra, (iv) magnetic resonance and 

the deflection of atomic and molecular beams, (v) nuclear magnetic 

resonance (NMR) in bulk and (vi) optical detection of NMR. 

 The spin of a nucleus is the resultant of the spins of its 

constituent nucleons – protons and neutrons.  It turns out that the spins 

of protons and neutrons can be represented, like that of an electron, by 

the same quantum number .  They have an angular momentum   

(h/2 ) or -  (h/2 ) respectively. 

 In addition to the spin angular momentum, the protons and 

neutrons in the nucleus have orbital angular momentum such that its 

magnitude in specific Z-direction is an integral multiple of h/2 .  Thus 

the intrinsic angular momentum of a nucleus is a vector  such that 

                                    =  +  =  

Where  is the contribution of the spin and  is the contribution 

of orbital angular momentum of all the nucleons. 



                                                                                  

 The magnitude of the total angular momentum vector  is given 

by   =  (h/2 ) 

Where I is a quantum number that gives the maximum value of  along 

the specific z-direction.  I may be zero, half integral or an integral 

multiple of h/2 . 

 Now, the orbital angular momentum  is an integral multiple of 

h/2 .  The spin angular momentum  is either a half-integral multiple or 

an integral multiple of h/2  depending on whether the number of 

nucleons is odd or even.  The nuclei in the ground state with even Z and 

even N nucleons have zero angular momentum without exception.  So 

for even A-type nuclei having either odd Z, odd N or even Z, even N 

nucleons, the vector  will be zero or an integral multiple of h/2 .  And 

for odd A-type nuclei having either odd Z, even N or even Z, odd N 

nucleons,   will be an odd half-integral multiple of h/2 . 

               =   . . . for odd A-type nuclei 

  and         = 0,1,2,3 . . .  for even A-type nuclei   

 

 The total angular momentum  of a nucleus is loosely but 

usually called the spin of the nucleus or nuclear spin, but it is different 

from the spin angular quantum number.  The total angular momentum 

of a nucleus can be computed from the multiplicity and relative 

spacings of spectral lines in an applied magnetic field .  If a nucleus 

with total angular momentum  be placed in an externally applied 

magnetic field, the magnetic quantum number ml have values ranging 

from + I to –I and thus split the energy levels into 2I + 1 sub-levels.  

The transitions between these sub-states may be used to estimate I from 

the multiplicity of spectral lines.  We have already discussed earlier, in 

this section, the different methods used to determine . 



 ● The symbol J is also sometimes used to represent the total 

angular momentum of a nucleus  

 

Nuclear energy levels. 

Studies of inelastic scattering and nuclear reactions indicate that nuclei 

posses a discrete spectrum of excited states – the nuclear energy levels.  

As suggested in Bohr’s theory of H-atom, here also, when the nucleus is 

in an excited state it may give up the energy and come back to the 

ground state by an emission of photon of energy exactly equal to the 

difference of energies of the two states involved.  This magnitude of 

energy however is such that the photon is a  radiation. 

 There are definite minimum energies needed to disrupt the 

nucleus into various components.  For instance, the light nucleus 12C 

may break up into 

(i) 8Be + 4He             (ii)  11B  +  1H 

  (iii)     11C +   1n                (iv) 10B + 2H etc.  

 The minimum energy values for the above disruptions of 12C 

nucleus are all above the ground state energy.  It implies that the 

nucleus in the ground state is stable against these decays.  But those 

excited states which are above the thresholds can break up in various 

ways indicating that the nucleus does not remain in an excited state 

indefinitely.  The life time of an excited state is finite and may be short 

or long depending on such factors as the probability of decay, the 

number of possible decay modes, selection rules, etc.   From the 

uncertainty relation  E. t  h, it follows that if the life time is finite, 

the energy of the state cannot be ideally sharp but would show a width 

or energy spread,  E = h/ t. 

Nuclear magnetic dipole moment 

The magnetic dipole moment associated with a spinning electron is 

given by 1 Bohr magneton, B where 

   B =  ( ) 

       = 9.27 x 10-24 J/Tesia 



                                                                                  

 In analogy, the magnetic dipole moment associated with nuclear 

spin is given by what is called a nuclear magneton, N. 

                 N =   = 5.051 x 10-27 J/Tesla 

Where mp = 1836 me,  the mass of a proton. 

 The measured values of magnetic moment of proton and neutron 

are:   p = 2.7927 N 

   n = 1.9131 N 

 The ratio of a nuclear magneton to a Bohr magneton 

     

The nuclear magneton is thus 1836 times smaller than the Bohr 

magneton and is also called Rabi magneton. 

 The magnetic moments of proton and neutron are intimately 

related to their intrinsic spin angular momenta, 

    

Where 8p = sn = .  

 For all nuclei, the magnetic moment  is, in amalogy with that 

of electron, given by 

    = N =  

Where Lande -factor (also called gyromagnetic ratio) varies from 

nucleus to nucleus. 

 For proton,  = 2.792 so that proton = 2.7927 N. 

 For neutron,  = - 1.913 so that neutron = 0 1.9131 N. 

● The magnetic moment of a proton is not 1 nuclear magneton; it has 

instead a moment +2.7927 N.  The positive sign indicates that the 

direction of the magnetic moment vector, , coincides with that of the 

angular momentum vector , as if there were circulation of positive 

charge. 



● The neutron has no net electric charge.  Bu it has also a magnetic 

moment equal to – 1.9131 N.  The negative sign points out that the 

direction of angular momentum vector  is opposite to that of the 

magnetic moment vector . 

Note 1.  Nuclei possess magnetic dipole moments because of the 

magnetic moments of individual nucleons.  In even-even nuclei, the 

resultant spin is zero and the magnetic moment is also zero.  In case it is 

not zero, it is measured in terms of nuclear magnetron.   

Note 2.  It is rather hard to understand how the neutral particle, neutron, 

can have a magnetic moment.  It can be attributed to the internal 

structure of neutron which can be looked upon as a combination of a 

proton and an electron.  These particles, spinning in different directions, 

have different values for magnetic moments which when vectorially 

added give a negative magnetic moment.  Further, the fractional values 

of dipole moments of neutrons and protons show that they are not 

simple in structure. 

 According to the current view, neutron consists of three quarks 

(Ch. Elementary particles) of fractional charges.   The charge 

distribution inside neutron is thus not symmetrical leading to a non-zero 

magnetic moment. 

  

 

 

 

 

 

 

 

 

 

Table 1.1 : Magnetic dipole moment of some nuclides 

   

   Nuclide             Spin                 Magnetic dipole moment  



                                                                                  

                         (in unit of N)  

                          

                                                             - 1.9131 

                        2.7927 

                                     1                                 0.8574 

                                                               -2.1275 

                                                                          2.9789 

                                      0                                  0        

               

 The net magnetic moment  of a nucleus depends on the 

resultant total angular momentum of the nucleus,   and is given by 

    = N  =  

Where  is the product of the gyromagnetic ratio  and the nuclear 

magneton N. 

 The values of nuclear magnetic moments can be estimated by 

nuclear magnetic resonance (NMR) spectrometers, microwave 

spectrometers, molecular beam magnetic deflection method etc. 

Determination of nuclear magnetic moment: 

   

Nuclear magnetic resonance (NMR) method 

 

The nuclear magnetic moment may be directly determind 

experimentally by the methods of magnetic resonance and nuclear 

resonance absorption.  

 Rabi’s method – The first accurate measurement of nuclear 

magnetic moment by magnetic resonance was made by Rabi and co-

workers.  The method is known as molecular beam magnetic resonance 

and resembles the Sterm-Gerlach experiment. 

 It consists essentially in allowing a beam of molecules from an 

oven (source) into the region of a non-uniform magnetic field of a 



magnet  A.   The beam follows a curved path, as shown in Fig.1.3, and 

passes through the slit  S1.  The magnet B produces however a uniform 

magnetic field and as such would exert a net zero deflecting force.  But 

in the region of this uniform field, another magnetic field is created 

(dotted circle) at right angles to the previous fields by a high-frequency 

(hf) electric current.  Next, the magnet C produces a non-uniform field 

that bends back the molecular beam such that the beam passes through 

the slit S2 and is detected by the detector.  Note that the magnets A and 

C give non-uniform fields in the same direction but with opposite 

gradients d Z. 

 The molecules, on passing through the uniform field, are 

spatially quantized and process like a spinning top about the field 

direction.  As the frequency of electric current is varied and made equal 

to that of precession, energy gets absorbed and the molecules take up a 

different quantized space-orientation.   The magnet C deflects them to 

pass through the slit  S2.  The decrease in the number of molecules 

through S2 can then be used to find the processional frequency which 

depends on the magnetic moment and the intensity of the central 

uniform field.  The method thus gives the value of the magnetic 

moment. 

●  Purcell, Torrey and others developed another method, known as 

magnetic nuclear resonance absorption, that uses no molecular beam.  

The solid (or liquid) sample is placed in a uniform magnetic field on 

which an hf-alternating field is superposed at right angles.  Protons and 

simple nuclei precessing round the uniform field direction get their 

quantized angles of space-orientation abruptly changed by absorption of 

energy when the ac-field is tuned to resonance with precessional 

frequency.  This absorption can be detected and magnetic moments 

computed. 

Parity of nuclei 

Parity is purely a quantum mechanical concept having no classical 

analogue. 



                                                                                  

 First proposed by Eugene Wigner, it describes the kind of spatial 

symmetry of physical phenomena.   A particle moving with a large 

velocity can be quantum mechanically associated with a wave and the 

wave motion can be described by a wave function (x, y, z) which 

depends on the space coordinates (x,y,z).  Also, if *  be the complex 

conjugate of , *  =  gives the probability of finding the particle 

at any given point. 

 Parity is the property of such a wave function representing a 

quantum mechanical nuclear state, which may or may not chage its sign 

or inversion of the space coordinates from (x,y,z) to (-x, -y, -z) 

throughout i.e., on reflection of the coordinate system at the origin.  The 

parity of a nucleus is thus related to the behaviour of nuclear wavefront 

as a result of reflection. 

 Definition:  If the sign of the wave function  does not, as a 

whole, change with the change in sign of the space coordinates – the so-

called process of reflection of nuclear position about the origin of 

(x,y,z) system of axis – the parity is said to be even or positive.  If 

however the sign of spatial part of wave function changes with change 

in sign of space co-ordinates, the system is said to have odd or negative 

parity. 

  (-x, - y, -z) = + (x,y,z) even (+) parity 

  (-x, -y, -z) =  -  (x, y, z) odd (-) parity 

Parity, thus defined, depends on the quantum state of motion of the 

system and for a particle under a central force (i.e. hydrogen-like 

atoms), the parity P is determined by the orbital quantum number l : p = 

(-1)1, so that for l = 0 or even, the parity is even and for l = odd, the 

parity is odd.  In the case of a system of particles P = (-1)L where L = 

, the orbital angular momentum of the system. 

 Let us further investigate the consequence of this reflection of 

the coordinate system, called the parity operation,  P.  It is equivalent to 

changing from a right-handed frame of reference to a left-handed one. 

 Consider a system of n-particles so that 



  P  ( ) =  ( ) 

 Assuming that the Hamiltonian H of the system remains 

invariant under inversion about the origin, 

  PH ( = H ((  

 But, Schrodinger’s wave equation gives 

  H  ( ) = E ( ) 

 PH  (  = PE  (  = E (- ),  by (1.12.1) 

  H  ( ) = E (- ),  by (1.12.4). 

  ( ) thus satisfies the same differential equation as  

( ).  Assuming  non-degeneracy, the two solutions of 

Schrodinger’s equation must be connected by a phase factor (constant). 

  ( ) = k  ( ) 

 P  ( ) =  ( ) = kP  ( ) 

 =k  ( ) = kk  ( ) 

by virtue of (1.12.6) 

     

    

 Thus, according to (1.12.6) and (1.12.8), parity is a quantum 

number implying that all wave functions are either odd or even under 

space inversion or P-operation.  

● A part from orbital parity, elementary particles may also have what is 

called intrinsic parity referring to inversion of some internal axis of the 

particle.  It is defined in a relative manner.  The nucleons are taken to 

have even parity, purely by convention, and it is then fixed for other 

particles such that the total parity, defined as the product of orbital and 

intrinsic parity, is conserved in nuclear reactions involving strong and 

electromagnetic interactions between the particles. 

It was believed, till 1956, that in all nuclear reactions, the parity was 

conserved.  But in 1956, direct experimental evidence was obtained that 

parity is not conserved in nuclear phenomena involving weak 

interaction forces.  The non-conservation of parity was first suspected 

 =  1  k =  1 



                                                                                  

theoretically by Li and Yang and was subsequently confirmed 

experimentally by Wu in 1956. 

The weak interaction in -decay provides an example of non-

conservation of parity.  The conservation of parity leads to some 

important selection rules in nuclear, atomic and molecular processes and 

in the production and decay of elementary particles.  Parity is thus an 

important characteristic of a state describing quantum mechanical 

systems. 

● An interesting consequence of the fact that parity P is a good quantum 

number is that nuclei can have no permanent electric dipole moment. 

While we are familiar with the classical definition of electric dipole 

moment of a charge distribution, quantum mechanically it is defined as 

  = ( )  d 1d 2…d n 

If now we replace 1 by - 1, 2 by - 2, etc., the first factor j changes 

sign, but not  because of parity. 

 

 

 We thus obtain the important result that electric dipole moment 

of a nucleus in its ground state vanishes.  This is also true for all non-

degenerate excited states. 

Electric quadrupole moments  

Many nuclei are not exactly spherical lines.  Departure of nuclear 

charge distribution from spherical symmetry is specified by the nuclear 

quadrupole moment.  

 If a localized charge distribution described by *  be placed in 

an external potential , the electrostatic energy of the system is 

  W =  

With origin  = 0 as the centre of mass of the nucleus.  Since  is 

confined to the small nuclear volume,  may be expanded in a 

Taylor series to get 

 



  = (0) + r (0) +    + . . . (i, j = x1, x2, x3). 

 Now, the electric field  = - .  But since the field is source-

free, .   = 0. 

  .  = . (- ) = -   = -  ij = 0;  i, j being dummy 

indices. 

 Substracting    from the third term of (1.13.2), we 

obtain 

  =  (0) + r  +   + … 

           = (0) - r (0) -   + … 

Inserting (1.13.3) in (1.13.1), we obtain 

  W = q (0) - pE(0) -   

Where q =   - total charge of the nucleus, 

  =  - dipole moment of charge distribution, 

 Qij = ij) p( )d2r 

      = (i-j) component of quadrupole moment tensor of  

       the charge distribution inside the nucleus. 

Qij = Qji  implies that the tensor is symmetric and of rank 2 in three 

dimensions.  It can be shown that 

 Q11 + Q22 + Q33 = 0 

 

By a principal axis transformation, one obtains a diagonal representation 

of the tensor.  As the tensor is, by (1.13.6), traceless it, remains 

invariant under the above transformation.  The number of independent 

components is two.  For a nucleus in the shape of a spheroid (Fig.1.4) – 

a prolate (the charge distribution is stretched in the z-direction) or an 

oblate (the charge distribution is stretched perpendicular to z-direction), 

the axial symmetry gives 



                                                                                  

 Q11 = Q22  Q33  Q33 = -2 Q11 = -2 Q22 

 

So, for such a system,     Q33 =  

● 1. For a prolate spheroid,  = 1 (a > b) 

Now, assuming a uniform charge density, we have 

    = q/  

Where Z is the charge number of the nucleus. 

●2. For a spherically symmetric charge distribution, 

   Q11 = Q22 = Q33 = Q, say 

Then, by (1.13.6),    Q11 = Q22 = Q33 = Q = 0 

Obviously, the existence of quadrupole moment Q implies deviation 

from the spherical symmetry, as stated at the very outlet. 

 It R be the average nuclear radius and  R the deviation of R 

from the direction of symmetry axis, then 

   Q =  ZR2 ( R/R) 

Q is usually measured in unit called barn, where 1 barn = 10-28 m2. 

 The magnitude of Q lies mostly in the range 10-28 to 10-30  m2 

and depends on the radius and charge of the nucleus and the amount of 

its deviation from spherical symmetry.  Quadrupole moment was first 

discovered in deuteron from the observations of the hyperfine structure 

of atomic spectral lines.  For deuteron, Q = +2.82 milli-barn (mb) which 

shows that the charge distribution in 2H nucleus has the shape of a 

prolate spheroid. 

 Q can also be estimated from the interaction of electric field 

gradient with the quadrupole moment of the nucleus from Mossbauer 

spectroscopy,  microwave spectroscopy, paramagnetic resonance 

spectroscopy, nuclear quadrupole resonance spectroscopy and from 

optical hyperfine spectra. 

 While a nucleus like deuteron, 2H, has the ratio R/R = 4%, the 

value of this ratio may be as high as 25-30%. 

The above discussion on quadrupole moment has been made from  



classical considerations.  When quantum mechanics is applied, it 

receives a new definition. 

 

 The charge distribution in a nucleus is treated quantum 

mechanically by defining quadrupole moment operator by 

   Qij   =  

Where ’s are the coordinates of protons. 

 

  (Qij) =  2d3r 

   

   = C   

Where C is a constant and < > indicate any matrix element between (2J 

+ 1) – nuclear states of angular momentum quantum number J, labelled 

by Jz.  Thus all the matrix elements of Qij are determined by a single 

quantity. 

 We usually take the expectation value of Q33
 in the state with Jz 

equal to the maximum value of J, and define this as the nuclear electric 

quadrupole moment Q. 

   Q = C  

         = CJ (2J – 1) 

  C =  

Other matrix elements are determined in terms of Q ; Q vanishes for J = 

 or J = 0. 

 

 

 

 

Statistics of nuclei 

The statistical behaviour of nuclear particles such as protons, neutrons, 

electrons and other fundamental particles can only be described 

quantum mechanically as they are indistinguishable from each other.  



                                                                                  

The wave function of a system of two identical particles, describing a 

particular property of the particle, can be either symmetric or 

antisymmetric by the interchange of spatial coordinates of the two 

particles.  When the wave function does not change in sign by such an 

interchange, it is said to be symmetric.  The corresponding quantum 

statistics is known as Bose-Einstein (B.E.) statistics.  If however the 

sign of the wave function changes by the interchange of coordinates, the 

wave function is said to be antisymmetric and the corresponding 

statistics is called Fermi-Dirac (F.D.) statistics. 

 All fundamental particles or their assemblies obey either the 

B.E. statistics or the F.D.  statistics.  Those parties which have total 

angular momentum or spin equal to zero or an integral multiple of h/2  

follow the Bose Einstein statistics and are called bosons.  Such particles 

do not obey Pauli’s exclusion principle so that any number of bosons 

can occupy the same quantum state.  Particles such as photons, -

mesons, K-mesons, and all nuclei having even mass numbers such as 

, , , … and integral spin follow the Bose’s statistics and are 

bosons. 

 Particles with an odd half integral spin (  ) that is, having 

total angular momentum equal to an odd half integral multiple of h/2  

however follow the Fermi statistics and are called fermions.  Fermions, 

unlike bosons, follow Pauli’s exclusion principle so that no two 

identical particles can have all the quantum numbers the same barring 

them to occupy the same quantum state.  Particles such as e-, e+, p, n,  

meson and nuclei of odd mass number like , , , , , 

, … which possess half integral spin follow the Fermi-Dirac 

statistics and are fermions. 

 In nuclear reactions, the statistics of the particles is conserved.  

If F.D. statistics is represented by symbol – 1 and B.E. by +1, the 

statistics of a group of particles is determined by the product of the 

symbols for each.  For instance, let us take the case of annihilation of a 



positron and an electron.  Before annihilation, the statistics of the 

system is (-1) x (-1) - +1.  After annihilation, the electron-positron pair 

gives rise to two photons which are bosons and they have the statistics 

(+1) x (+1) = +1.  So, there is the conservation of statistics in nuclear 

phenomena. 

 

 

3.5 Binding Energy  

 

Nuclear mass and binding energy 

The mass-spectroscopic measurements give not the masses of the nuclei 

but those of the atom.  The nuclear mass Mnuc is obtained from the 

atomic mass M(A,Z) by subtracting the masses of Z orbital electrons. 

 

                       

 

 The above expression however is not exact in that the 

binding energies of the electrons have not been taken into consideration.  

The error however is negligibly small.   

 The nuclei are very strongly bound and energies of  

few MeV are needed to break away a nucleon from the nucleus.  In 

contrast, only a few eV is necessary to detach an orbital electron from 

an atom.  So, to break up a nucleus of Z protons and N neutrons 

completely into separate particles, a minimum amount of energy is to be 

supplied to the nucleus.  This supplied energy is called the binding 

energy.  EB, of the nucleus. 

 Conversely, to build, out of Z protons and N neutrons 

remaining at rest and separate from one another, a nucleus of mass 

number A(=N + Z) and nuclear charge Z, an amount of energy equal to 

EB will be evolved.  But what indeed is the source of this energy? 

 According to special relativity, the energy equivalent E 

corresponding to a complete conversion of a mass m into energy is E = 

me2, where c is the velocity of light in free space.  In forming a nucleus 

 = M(A,Z) - 

Z  



                                                                                  

out of the constituent particles, a fraction of the total mass of the 

constituents disappears and the evolution of equivalent energy EB 

occurs.  It  be the amount of mass disappeared, then the 

  Bind energy, EB  = M.c2  

 If MH and Mn  be the masses of hydrogen atom and the 

neutron respectively, 

  = ZMH + NHn – (M(A,Z) 

Where M(A,Z) is the mass of the atom of mass number A and atomic 

number Z. 

                         EB = [ZMH + NHn – M(A,Z)]c2 

                       = [ZMp  + NMn + Zm3 – Mnuc – Zme]c
2 

 

 

Using equation  

 So, the mass-loss  for the formation of nucleus is 

equal to the sum of the masses of Z protons, N-neutrons minus the 

nuclear mass of the atom. 

 In energy unit,    = ZMp + NMn  - Mnue, 

dropping c2 from the above equation (1.3.4). 

 The methods of determination of atomic masses have 

already been described in companion volume: Physics of Atoms in 

Chapter : Ions and Electrons. 

 

Unit of atomic mass 

The unit of atomic mass is presently defined to be one-tweifth of the 

mass of the atom of carbon isotope 12C taken to be exacity 12 units, and 

is symbolized by u, the abbreviation for  ‘unified atomic mass unit’.  

This comes to usage since 1961 by an international agreement.  It is 

called ‘unified’ since prior to 1961 there was no unity among the 

physicists and the chemists in regard to atomic mass unit.  While the 

physicists’ unit was one-sixteenth of the mass of 16O isotope (taken to 

be exactly 16 unit), called the ‘atomic mass unit’ (amu), the chemists’ 

 



atomic mass unit was one-sixteenth of the average atomic weight of the 

three isotopes of oxygen 16O, 17O and 18O with relative abundance 

99.76%, 0.04% and 0.20% respectively.  The conversion factor from 

one scale to the other is  

  1 u : 1amu = 1.0003172:1 

 Since, 1 mole of 12C has the mass of 12g or 12 x 10-3 

kg, the unit of atomic mass in 12C scale is 

       1u =   kg =  kg.  (NA = Avogadro 

number)                       

  = 1.660566  kg. 

The energy-equivalent of 1 u is thus 

       1 u = 1.660566    c2 = 1.660566    8.98755  

1016 

  = 14.924427   J =   MeV 

            = 931.502 MeV = 931.5 MeV 

 The energy-equivalence of the rest mass of electron, 

proton and neutron are respectively given as under:  

          Electron (me) = 9.10953  10-31kg = 5.48580  10-4 u 0.51 

MeV/c2 

          Proton (mp) = 1.67265 kg = 1.0072765 u = 938.27 

MeV/c2 

          Neutron (mn) = 1.67495 kg = 1.0086650 u = 939.57 

 Importance of accurate determination of atomic 

masses – Modern mass spectroscopes can measure atomic masses 

accurately up to one part in a million or still better.  Such accuracies are 

of great importance in correctly determining the nuclear binding 

energies and nuclear disintegration energies.  A simple calculation on 

the -disintegration of a heavy element like Ra-226 would indicate that 

the disintegration energy is less than one part in 40,000 of the mass 

disintegrating nucleus.  So, if the atomic masses are not measured more 



                                                                                  

accurately than that order, correlation of the measured disintegration 

energy with the change in mass due to disintegration would be a far cry. 

Binding energy and stability of nucleus 

If EB > 0, i.e. positive, the nucleus is stable and energy from outside is 

to be supplied to disrupt of nucleus into its constituents separately.  If, 

however, EB < 0, i.e. negative, the nucleus is unstable and will 

disintegrate of itself.  The EB, more is the stability. 

 As an example, let us compute the binding energy EB 

for an -particle, i.e. .  The belium nucleus is made up of 2 protons 

and 2 neutrons. 

 ZMp = 2  1.007276 =    2.014552 u 

   NMn = 2  1.008665 =    2,017330 u 

         __________ 

     Total  =    4.031882 u 

 Atomic mass of     =    4.002603 u 

          _________  

                  Difference   = + 0.029279 u 

 

 The plus sign indicates that the nucleus is stable.   And 

since 1 u  931 MeV, the binding energy in MeV is EB = 0.029279  

931 = 27.16 MeV.   

 The binding energy of He-nucleus is 27.16 MeV and 

this explains why it is a very stable structure, coming out as it does as 

-particle in radioactive decay. 

 

 Every nuclide has a fixed binding energy meaning that 

the same amount of energy would always be required to pull all the 

nucleons completely apart.  This binding energy divided by the number 

of nucleons is called the (average) binding energy per nucleon or 

binding fraction, fB = EB/A. 

 

3.6 Packing Fraction 

 



Mass defect and packing fraction 

Accurate determination of the atomic masses indicates that they are not 

exactly whole numbers, although the difference is small.  For instance, 

the atomic mass of 12C is exactly 12u, but the masses of other atoms, 

although very close to, are not exactly whole numbers (integral).  For 

instance, 

  1H-=1.007825 u; 2H = 2.014102 u 

 4He = 4.002603 u; 16O – 15.994915 U;    226Ra = 

226.02543 u etc. 

 

The departure of measured atomic mass from M (A,Z) from mass 

number A is rather significant.  

 

Mass defect – The difference between the measured atomic mass 

M(A,Z) in u, and the mass number A of a nuclide is called the mass 

defect,  M'. 

 

   

 

 

 The mass defect of 4He = 4.002603 – 4 = +0.002603 u 

and that of 16O – 15.994915 – 16 = -0.005085 u.  The mass defect can 

therefore be both positive and negative.   It is found that the mass defect 

is positive for very light and very heavy atoms, and it is negative for 

atoms in the intermediate range. 

  

 

 

Packing fraction 

Packing fraction – Aston expressed the departure of atomic masses from 

their mass numbers in terms of packing fraction for each nuclide. 

 



                                                                                  

 The packing fraction f is defined as the mass defect per 

nucleon in the nucleus, that is, the mass defect of an atom divided by its 

mass number.  So, 

  f =  

  =  

  or,  

 

 Note that the f has the same sign as the mass defect 

M' 

 It is found that the packing fraction f varies with the 

mass number in a systematic fashion (the packing fraction curve) as 

represented graphically in Fig.1.1.   It is observed that the packing 

fraction is positive for very light nuclei and as A increases, f decreases 

rapidly, becoming negative for A > 20.  It attains a minimum value 

(negative) at A  60, whence it starts increasing again but rather slowly.  

For A  180,  it becomes positive again. 

 This systematic variation of   f  with  A  can be 

explained from consideration of nuclear binding energy.  The binding 

fraction. 

    FB =  =  , in energy unit. 

 Computation of fB’s for different nuclides shows that 

they are highly variable.  For instance, it is 1.112  MeV  for deuteron.  

7.07 MeV for -particle (4He) and 7.98 MeV for 16O.  These difference 

reflect the relative strengths of their binding.  While 2H is weakly 

bound, 4He or 16O  are relatively more strongly bound. 

 

 

 

Binding fraction vs mass number curve 

The nature of variation of fB with A, for different nuclei is represented 

graphically in Fig.1.2 and is called the binding fraction curve. 

M(A,Z) = A(1 + f) 



 A critical survey of the curve will readily bring out the 

following points of immense physical importance: 

1. fB is very small for very lightnuclei and goes on increasing rapidly 

with increasing A and reaches a value  8 MeV for the mass number 

A  20.  Thereafter, the rise of the curve is much slower, reaching of 

maximum value of 8.7 MeV for A = 56.  If A is increased still further, 

the curve again starts decreasing but slowly. 

2. The variation in fB is very slight in the range of mass number 20 < A 

< 180 and in this region fB may be considered to remain virtually 

constant having a mean value  8.5 MeV 

 3.  For A > 180, that is, for heavy nuclei, the fB-value 

decreaces monotonically with increasing A and is  7.5 MeV for the 

heaviest nuclei. 

 4. A rapid fluctuation in fB is noted for very light nuclei 

with some peaks in the curve in this region, corresponding to the even-

even nuclei, such as 4He, 8Be, 12C, 16O etc. i.e. with mass number A = 

4n, where n = 1,2,3,4 . . .  etc.  Similar peaks but less prominent in the 

curve are also seen at Z or N equal to 20, 28, 50, 82, 126.  These are 

called magic numbers (to be discussed, in more details, in Chapter: 

Nuclear models).    

 The significance of these peaks is that the 

corresponding nuclei are more stable relative to those in their 

neighbourhood. 

              ● The phenomena like the energy release in nuclear fission and 

also the reason for -decay of heavy nuclei can be qualitatively 

explained by the binding fraction curve and will be discussed at 

appropriate places. 

 

 

Complementarity of binding and packing fraction curves 



                                                                                  

It is easy to see that the nature of the binding fraction curve (Fig.1.2) is 

complementary to the packing fraction curve (Fig.1.1).  It can be readily 

understood why it is so. 

 We have:  EB =  ZMP + NMn – M(A,Z) 

             =  Z(1 + fp) + N(1 + fn) – A(1 + f), using 

(1.6.1) 

                        = (Z + N) + Z fp + N fp – A – Af 

             = Z fp + N fn – Af     (∵ A = Z + N) 

      fB =  =  – f 

 Now, the first term on the right side of (1.7.1) is nearly 

constant, particularly for lower A- values when Z  N  A/2.  Thus, fB 

increases or decreases as f decreases or increases respectively.  Hence, 

the curves representing the variation of fB and  f  appear complementary 

in character.  Where the (f-a) curve shows a minimum, the (fB-A) curge; 

and for higher A, the region of positive slope in the first curve 

corresponds to the region of negative slope in the second. 

 

3.5 Nuclear stability 

Nuclear stability means that nucleus is stable meaning that it does not 

spontaneously emit any kind of radiation. On the other hand, if the 

nucleus is unstable, it has the tendency of emitting some kind of 

radiation, which makes it radioactive. Therefore the radioactivity is 

associated with unstable nucleus: 

Nuclear forces :   

According to Coulomb’s law, the positively charged protons, closely 

spaced within the nucleus, should repel each other strongly and they 

should fly apart.  It is therefore difficult to explain the stability of 

nucleus unless one assumes that nucleons are under the influence of 

some very strong attractive type forces.  The forces are essentially equal 

in magnitude as warranted by experimental evidence and were studied 

extensively over a long period by the Japanese scientists Hideki 

Yukawa.  In 1935, he described the chief characteristics of nuclear 

forces and postulated a particle, pion with a rest mass 270me, that 



played an integral part in the explanation of nuclear forces.  Yukawa 

was awarded Nobel Prize in physics in 1949 for his contributions to the 

understanding of nuclear forces. 

According to Yukawa, the following are the characteristics of nuclear 

forces: 

1. The are short range forces, i.e., effective only at short ranges. 

2. They are charge-independent, i.e., they do not seem to depend on the  

    charge of the particle. 

3. They are the strongest known forces in nature. 

4.  They get readily saturated by the surrounding nucleons, and 

5.  They are spin-dependent. 

 We shall now discuss the above characteristics of the 

nuclear forces in somewhat more details. 

 Short range – The results of scattering experiments:  p-

p scattering n-p scattering etc.  show that the nuclear forces operate over 

extremely short distance inside the nucleus.  Between two nucleons, the 

distance is of the order of 1 fermi (1fm = 10-15 m) or less.  They are not 

like the inverse square law forces such as Coulomb force between 

electric charges.   If a nucleus is bombarded with protons and if the 

range of nuclear force be of the same order of magnitude as Coulomb 

repulsion, they would be affected by both type of forces.  But the 

scattering of protons will be different from the one corresponding to a 

pure Coulomb scattering. 

 The protons that pass not too close to the nucleus are 

scattered by electric repulsive forces.  But if the energy of the incident 

protons be large enough to overcome Coulomb repulsion, they may pass 

very close to nucleus, within a distance ro from the centre of the nucleus, 

and fall in the range of attractive nuclear forces.  They would then be 

captured and fall, as it were, into the potential well of the nucleus.  The 

scattering of protons in this case is mainly due to strong and attractive 

nuclear forces and the distribution is distinctly different from Coulomb 

scattering. 

 There is however some evidence to suggest that at 

extremely short distance (0.5 fm), the attractive force turns into a 



                                                                                  

repulsion so that in a stable nucleus, the nucleons do not get too close 

together. 

 Charge independence – Experimental evidence 

indicates that the interaction between any two nucleons is independent 

of the charge.  Also the interactions among the nuclear forces between 

n-n, p-p and p-n, exclusive of Coulomb forces, have been found to be 

the same to a high degree of accuracy.  This suggests that the proton and 

neutron can be considered as different charge states of the same particle.  

Charge independence of nuclear forces means interaction p-p  p-n  

n-n.  This is evident from the tendency of nuclei with small Z to have Z 

= N = A/2. 

 Strong forces -  The strong interactions, the forces 

between the nucleons, are the strongest forces found in nature.  The 

gravitational and the electromagnetic interaction were known to us long 

before the nuclear forces, as they were associated with macroscopic 

bodies, e.g., the gravitational forces between the planets and the sum 

and the electrical forces between charged bodes.  But they are far 

weaker compared to the nuclear force.  For instance, the gravitational 

force is only  10-40 of the strong interaction. 

 Although, protons repel each other via the electric 

force, they attract each other via the strong nuclear force that keeps the 

nucleons together.  Neutrons attract other neutrons and protons via this 

strong nuclear force. 

 Saturation – Nuclear forces are the only ones in nature 

that show saturation effect.  The ability of nuclear forces to act upon 

other particles attain a point of saturian meaning that a nucleon can 

interact strongly with only a limited number of neighbouring nucleons.  

Addition of nucieons only increases the total binding energy but not the 

B.E.  per nucleon. 

 Summarising: (i) the forces between nucleons are 

attractive in nature when they are 0.5 – 25 F part; (ii) these forces are of 

short range having maximum value at about 2 x 10-15 m and fall off 

sharply with distance, becoming negligible beyond this range; (iii) they 



are charge-independent so that the nuclear force between a proton and a 

neutron or between a neutron and neutron are almost the same; (iv) they 

have the property of saturation – a particular nucleon interacts with a 

limited number of nucleons around it and the other surrounding ones 

remain unaffected.  So they become saturated over short distances; (v) 

the nuclear forces depend on the natural orientation of spins of various 

nucleons and are different in parallel and antiparallel spins.  

 A more detailed study of interaction requires the 

specification of the form of the nuclear potential V(r).  Scattering 

experiments with high energy particles show that there is a repulsive 

core at the centre of the nucleus but for which all nuclei would have the 

same radius, but R = roA
1/3 . 

 ● In addition to the strong nuclear force which is far 

stronger than Coulomb interation, there is, as indicated by experimental 

evidence, a third type of force which is also a short range force but 

much weaker than the nuclear force.  This is termed weak interaction.  It 

may be as small as 10-14 of strong nuclear force.  It is also not of 

gravitational type. 

 Interestingly, the weaker the force, the larger must be 

the system in order that it might be of importance.  For example, the 

strong interactions hold the nucleons, the electromagnetic force holds 

the larger systems of atoms and molecules, while the gravitational force 

becomes important only in astral systems. 

 The chief forces of nature are thus of the following 

four types: 

(i) the strong nuclear force, 

(ii) the electromagnetic force, 

(iii) the weak interaction force and 

(iv) the gravitational force. 

● According to Yukawa’s theory, protons and neutrons do not exist 

independently within a nucleus but constantly exchange charges by 

emission and absorption of -mesons (pions) in themselves.  This 

constant emission and absorption result in an exchange of virtual 



                                                                                  

mesons by nucleons, within the nucleus, in ultra short intervals  10-23 

to 10-24 s.  As the exchange occurs in a very short time, the uncertainty 

principle requires that no visible change in nucleonic mass would be 

observed.  This gives rise to rapid meson exchange or meson field 

between protons and neutrons in which meson acts as a quantum of 

nuclear force.  The process in analogous to exchange of photons 

between charged particles in electromagnetic interactions. 

 1.16  Rutherford’s -ray scattering 

Rutherford and his co-workers Geiger and Marsden made a detailed 

systematic study of the scattering of -particles obtained from 

radioactive sources by ultra-thin foils of elements of high atomic weight 

e.g., gold, platinum etc.  The foil is so thin that only single scattering 

occurs.  They observed that the majority of -particles were scattered 

through small angles, are expected, but a few however deviated by 90° 

and a still smaller number surprisingly turned back, being deflected 

almost by 180°.  This large angle scattering was called anomalous 

scattering as Thomson’s atom model could not explain it. 

 To explain the large angle scattering of -particles,  

Rutherford proposed that inside the atom, the positive charge and 

almost the whole of the atomic mass were concentrated in a very small 

central region, called the nucleus, round which, in some sort of 

configuration, the electrons rotate in groups. 

Rutherford’s scattering formula 

We shall now derive the Rutherford’s scattering formula here after Max 

Born. 

 The nucleus of the atom with charge Ze and an -

particle with charge E(=2e), mass M and distant r, repel one another 

with a force F = (Ze) E/4 0r
2 where o is the permittivity of free space.  

Let the heavy nucleus be at rest.  The -particle would then describe 

under the central inverse square law of repulsion, one branch of a 

hyperbola PAP' with K, one of its foci (K,K'), as the nucleus.  



 Let b be the distance of the nucleus K from the 

asymptote of the hyperbola (Fig.1.5) which would have been described 

if there were no repulsion.  This b is called the collision (or impact) 

parameter which may be defined as the minimum distance to which the 

-particle would approach the nucleus if there were no force between 

them. 

 Let q be the distance of K from the vertex A.  Then we 

have, from the equation of a conic (hyperbola) 

   Q =  (1 + ) 

Where OK, the linear eccentricity; 0 is the origin and 0 the angle 

between the axis and the asymptote of the hyperbola. 

   q = b  = b cot  (  = b/ ) 

Step 1.  First, we seek a relation between the impact parameter b and the 

angle of scattering , defined as the angle between the asymptotic 

direction of approach of the -particle and the asymptotic direction in 

which it moves back, by applying the laws of conservation of energy 

and momentum.  At a great distance from the nucleus,  -particle have 

only kinetic energy and let v be the velocity there. 

 From the conservation of energy when it passes the 

vertex A where the velocity is vo, we obtain 

       +  =  ,  

              

            = 1 -  = 1 -  = 1 -  , 

Using (1.16) and also by substituting 

    k =  

From conservation of angular momentum, again, we have 

   Mvb = Mvoq 

   =  =     =   =   



                                                                                  

Comparing (1.16.2) and (1.16.4), we obtain 

 1 -  =    =  = tan , on 

simplification. 

         (   = - 20)   

 

Which shows that Φ is b-dependent and smaller the b, larger is Φ.  But 

it is not possible to measure b directly and (1.16.5) cannot be verified 

experimentally.  We therefore switch over to the next step. 

 Step 2.   We shall now find how many -particle in an 

incident parallel beam are deviated by a specified angle. 

 Let a plane P be at right angles to the incident beam 

(Fig.1.6a) and at a great distance from nucleus K.  The foot of the 

perpendicular from K to the plane is C. 

Plainly, all the -particles that pass through a ring of P formed by two 

circles of radii b and b + db will be subject to a deviation between Φ 

and Φ + dΦ.   If one particle passes per sec per unit area of P, the 

number of particles passing through the ring is 

  dn = 2 b x db 

 where db = d (k cotΦ/2) = - kdΦ/2sin2(Φ/2) 

     =  , 

the number of particles deviated through Φ and Φ + dΦ, i.e., within a 

solid angle d  = dS/r2, where dS  = 2 2 sin ΦdΦ (Fig.1.6(b)), the area 

on the screen impacted by scattered particles.  So, W(Φ), the number of 

-particles deviated per unit solid angle in dn/ d  = dn/2  sin ΦdΦ = 

db/4  sin (Φ/2) cos(Φ/2)dΦ and is the probability of deviation per unit 

solid angle.  So, using (1.16.6) 

 

        

  

 

b = k tan  = k cot /2 

W(Φ) =   =    



 This is the -ray scattering formula of Rutherford.  It 

requires a correction for the motion imparted to scattering nucleus, 

which is appreciable only in light nuclei. 

 ● Alternative form – If Ni monoenergetic -particles 

are incident normally per unit area on a thin foil of thickness t, 

containing n atoms (hence n nuclei) per unit volume, the number NΦ of 

scintillations produced by -particles falling normally on unit area of 

the screen along Φ is 

  NΦ = Nint.W (Φ) = Nint   , 

which is just an alternative form of Rutherford’s formula. 

 Discussion – According to Rutherford’s formula, the 

amount of scattering (= no. of particles per unit area striking a screen at 

a given distance from the scatterer and normal to the direction of motion 

of scattered particles) should be proportional to (i) 1/sin4 (Φ/2), (ii) the 

thickness t of the material, (iii) Z2 and (iv) v-4 , that is, inversely to the 

square of the kinetic energy. 

 Each relationship between Z, M, v and Φ contained in 

Rutherford’s equation can be tested experimentally by counting the 

scattered -particles.  The v-relation can be studied only over a small 

region as the range of velocity available with naturally occurring  -

particles is small.  Giger and Marsden checked (1.16.8), factor by factor, 

changing one factor at a time, keeping the others constant and the 

agreement, in general, was excellent. 

 ● In deriving the relation (1.16.5) between the impact 

parameter b and the angle of scattering Φ, the following assumptions 

have been made. 

 1. The -particles and the atomic nucleus are point 

charges. 

 2. Compared to -particles (mass = 4 u), the gold 

nucleus is quite massive (mass number = 197 u) and the recoil energy 

energy of -particles has been ignored. 



                                                                                  

 3.  The scattering is due to the electrostatic repulsion 

between the -particles and the positive charge Ze of the nucleus. 

 4. The -particles cannot penetrate the nuclear region 

and the strong interaction of nuclear forces are not considered. 

 ● In deriving Butherford’s formula, note that the we 

have reglected to effect of extra-nuclear electrons of the gold atom.  But 

why? This is due to the fact that the effect of the extremely light 

electrons is quite negligible; the deflection of heavy -particles due to 

them is  only through angles  1°. 

 ● An important parameter in -ray scattering is the 

distance of closet approach.  As the -particles approaches for a head-

on collision with the nucleus, it is slowed down due to the repulsive 

force of the nucleus till at the point A (Fig.1.7), whence it is turned back 

from the nucleus, all the kinetic energy of the particle is converted into 

potential energy.  The distance d of this point A from the nucleus is the 

distance of the closet approach. 

     =  =   

    

 

● Another important parameter is the cross-section  of scattering.  The 

incident -particles aimed to strike at the circumference of the circle of 

radius b, about the nucleus, will all get deflected through Φ (Fig.1.8).  

The -particles striking within the shaded area b2, will get deflected 

by an angle > Φ.  The area b2 is called the cross-section  of 

scattering.   

     

 ● Ratio of scattered to incident particles, Ns/Ni – Let 

the total target area presented by all the nuclei in the foil be A and 

thickness t, and t be so small that single scattering occurs. 

d =   = 2k 

 



 Number of nuclei in the foil = nAt, n being the number 

of atoms (nuclei) per unit volume.  Hence the target area for scattering 

by at least Φ is Ns =  (nAt).  The total area of the foil being large 

compared to , the incident beam cannot be aimed to strike any one 

nucleus, and the probability that one incident particle may be scattered 

by an angle greater than Φ is 

   =  = nt = b2nt  

Verification of Rutherford’s formula 

Rutherford’s scattering formula has been verified over a wide range of 

Φ by Geiger and Marsden using various thin metallic foils. 

 Arrangement – The apparatus employed by them is 

shown schematically in Fig.1.9 C is an evacuated metallic chamber 

housing a radon tube S mounted in a cavity in a metal block D.  The -

particles from S are collimated into a fine beam by an aperture in D and 

is allowed to fall normally upon the foil F.  Both S and F are attached to 

the tube for evacuating the chamber C, and are held fixed in position 

throughout the experiment.  The scintillations are observed by the 

microscope M fitted with a fluorescent screen P mounted in the focal 

plane of the objective.  M is inserted in the wall of C that rests on a 

horizontal graduated platform A through greased-cone joints.  C can be 

rotated (Fig.1.10) about a vertical axis through F without affecting the 

vacuum.  With a given foil as scatterer, this vacuum.  With a given foil 

as scatterer, this rotation would provide different scattering angles from 

5° to 150°.  The arrangement is such that the scattered -particles 

always strike the screen P normally.  The angle of scattering is read 

from the graduations of the platform A. 

 With a particular group of -particles and a fixed 

distance between the scatterer and the foil, it appears from (1.16.8) that 

NΦsin4(Φ/2) should be a constant for a given foil, NΦ being the 

scintillations per sec at an angle Φ.  In the table that follows, the results 

obtained by Geiger and Marsden are given.  It bears testimony to the 

validity of Φ-dependence as given in (1.16.7) or (1.16.8). 



                                                                                  

 Table 1.2 : Results of Geiger and Marsden 

             Scattering angle Φ            Scintillations              NΦsin4(Φ/2) 

   (In degrees)         NΦ per sec 

  

  15   132,000  38.3 

  30        7,800  35.0 

  45        1,435  30.8 

  60          477  29.8 

         75          211  29.1 

                             105                                69.5  27.5 

         120                           51.9                       29.0 

                           135                                43.0  31.2 

                             150          33.1                      28.8 

  

   

          To study the dependence of scattering on the thickness of the foil, 

nature of the foil and also the speed of the -particles, the apparatus as 

shown in Fig.1.11 is used.  It is a cylindrical brass chamber B, each side 

being closed by glass plates P.  The chamber is highly evacuated.  Foils 

F of known thickness are mounted on a disc G which can be rotated 

from outside.  The foils could thus be presented one after another to the 

normally incident beam of homogeneous -rays from the source at O, 

placed just outside the chamber wall.  The -particles enter the chamber 

via a thin mica window W and are collimated by a diaphragm D.  The 

scattered particles are viewed by the microscope M at the fluorescent 

screen S so mounted that the angle of scattering is fixed at 25°. 

 Results – The experimental results could be 

summarised as follows.  The amount of scattering: 

   the thickness of the foil 

   (atomic number)2, 

   (velocity of particle)-4 

   1/sin4 (Φ/2). 



Rutherford’s scattering formula thus stands well verified 

experimentally. 

 

3. 8 Liquid Drop Model 

The constant density of the nuclear matter and the constant binding 

energy per nucleon are very similar to those found in a liquid drop. The 

very strong short range interaction between the nucleon permits us to 

consider their collective behavior in determining the properties of the 

nucleus. There are reasons to believe that each individual molecule 

within a liquid drop exerts an attractive force upon a group of molecules 

in its immediate neighborhood. The force of interaction does not extend 

to all the molecules within the drop. This is known as the saturation of 

the force. In order to calculate the potential of the interaction, it is 

necessary to know the number of interacting pairs of molecules within 

the drop. The binding energy BE of a nucleus is proportional linearly to 

the number of nucleus within it, so that the binding fraction fB is 

linearly constant for most nuclei. This fact shows a close resemblance of 

the nucleus with a liquid drop. Thus we come to the conclusion that the 

inter nucleon force within the nucleus attains a saturation value, so that 

each nucleon can interact only with a limited number of nucleon in its 

close vicinity. Apart from this, there are certain other points of 

resemblance between the nucleus of an atom and a liquid drop:  

1. The nuclear force is similar to the force of surface tension on the 

surface of the liquid drop.  

2. As in the case of a liquid drop, the density of the nuclear matter is 

independent of its volume. The nuclear radius R0 A1/3 where A is the 

mass number. Hence the nuclear volume VA. Since the nuclear mass 

M~A, the density of the nuclear matter ρm = M/V is independent of A.  

3. The different types of particles, e.g., neutrons, protons, deuterons, α-
particles etc. are emitted during nuclear reactions. These processes are 

analogous to the emission of the molecules from the liquid drop during 

evaporation.  



                                                                                  

4. The internal energy of the nucleus is analogous to the heat energy 

within the liquid drop. 
 

5. The formation of the short lived compound nucleus by the absorption 

of a nuclear particle in a nucleus during a nuclear reaction is analogous 

to the process of condensation from the vapour to the liquid phase in the 

case of the liquid drop. The liquid drop model is not very successful in 

describing the low lying excited states of the nucleus. Because of the 

collective motions of the large number of nucleons involved, the model 

gives rise to closely spaced energy levels. Actually however, these are 

found to be quite widely spaced at low excitation energies.  

 

Deformation of liquid drop  

The fission process can be explained with the help of liquid drop 

model. The incident neutron combines with the nucleus to form highly 

energetic compound nucleus. Its extra energy is partly the kinetic 

energy of the neutron but largely the added binding energy of the 

incident neutron. This energy appears to initiate a series of rapid 

oscillations in the drop, which tend to distort the spherical shape so that 

the drop may become ellipsoidal in shape. The surface tension forces 

tend to make the drop return to its original spherical shape, while the 

excitation energy tends to distort the shape still further. If the excitation 

energy is sufficiently large, the drop may attain the shape of a dumb-

bell. If the oscillations become so violent that the critical state, stage 

fourth of Figure, is reached then the final fission into stage fifth is 

inevitable. Thus there is a threshold energy or a critical energy required 

to produce stage fourth after which the nucleus cannot return to stage 

first. When the distortion produced is not pronounced enough to get the 

nucleus beyond the critical point, the ellipsoid will return to the 

spherical shape with the excitation energy being liberated in the form of 

γ-rays and we have a radiative capture rather than fission.   



 

 

Figure : Schematic representation of nuclear fission 

 

3.9 Shell Model of Nucleus  

It is believed that protons and neutrons in a nucleus to be in a 

continuous process of collision with each other. With the enormous 

strong force acting between them and with so many nucleons to collide 

with, how can nucleons possibly complete whole orbits without 

interacting. According to Pauli's exclusion principle, no two electrons 

cannot occupy the same quantum state. The evidence for a kind of shell 

structure and a limited number of allowed energy states suggests that a 

nucleon moves in some kind of effective potential well created by the 

forces of all the other nucleons. This leads to energy quantization in a 

manner similar to the square well Potential . The labels on the levels are 

somewhat different from the corresponding symbols for atomic energy 

levels. The energy levels increase with orbital angular momentum 

quantum number l, and the s,p,d,f... symbols are used for l =0,1,2,3... 

just like the atomic case. But there is really no physical analog to the 

principal quantum number n, so the numbers associated with the level 

just start at n=1 for the lowest level associated with a given orbital 

quantum number. In addition to the dependence on the details of the 

potential well and the orbital quantum number, there is a sizable spin-

orbit interaction which splits the levels by an amount which increases 

with orbital quantum number. This leads to the overlapping levels as 

shown in the illustration.  

The subscript indicates the value of the total angular momentum 

j, and the multiplicity of the state is 2j + 1. The contribution of a proton 

to the energy is somewhat different from that of a neutron because of 

the coulomb repulsion, but it makes little difference in the appearance of 

the set of energy levels. It is found that nuclei with even numbers of 



                                                                                  

protons and neutrons are more stable than those with odd numbers. In 

particular, there are "magic numbers" of neutrons and protons which 

seem to be particularly favored in terms of nuclear stability, they are : 

2,8,20,28,50,82,126. Nuclei which have both neutron number and 

proton number equal to one of the magic numbers can be called "doubly 

magic", and are found to be particularly stable. 

 

Illustrsted Examples  

► Example 1.  Calculate the binding energy in MeV of 4He from the 

following data: Mass of 1H = 1.008145 u and the mass of a neutron is 

1.008986 u. 

Solution. 4He nucleus contains 2 protons and 2 neutrons.  So, the mass 

of the constituents = 2(1.008145 + 1.008986) = 4.034262 u.  But the 

mass of 4He nucleus = 4.003875 u. 

  Mass different (loss) = (4.034262 – 4.003875) = 0.30387 u. 

             Binding energy,  EB  = 0.030387 x 931 MeV = 28.29 MeV 

► Example 2.  The masses of the hydrogen atom and the neutron are 

1.008142 u and 1.008982 u respectively.  Calculate the packing fraction 

and the binding energy per nucleon of 16O nucleus. 

Solution.  16O nucleus consists of 8 protons and 8 neutrons. 

  Mass of constituents = 8(1.008142 + 1.008982) = 16.136992 u. 

  Mass of 16O nucleus = 15.994915 u 

  Mass difference (loss) = 0.142077 u 

 Binding energy, EB = 0.142077 x 931 = 132.27 MeV 

  Mass defect, M' = M(A,Z) – A = 15.994915  16 = 0.05085 u 

   Packing fraction = M'/A = 0.005085/16=3.178 x 10-4 



 

► Example 3.  Since  and  are mirror nucli, their ground sates 

are identical except for charge.  If their mass different is 6 MeV, 

estimate their radius (neglect the proton-neutron mass difference). 

Solution.   The mass-difference between mirror nuclei can be attributed 

to the difference in electrostatic energy.  Now, the electrostatic energy 

of a charge Q distributed uniformly throughout a sphere of radius R is 

W = 3Q2/5R. 

  W =    R =  (142 – 132) =   x 27 

Where e2/he = the fine structure constant = 1/137. 

    R =  x x 27 

  = 0.0388 x 10-11 cm = 388 fm 

► Example 4. Find the value of the impact parameter and the cross 

section for an -particle of energy 7.68 MeV, scattered by a thin gold 

foil (Z = 79) of thickness 6 x 10-10  cm for a scattering angle of 90°.  

Also, calculate the number of -particles incident on it.  (At wt. of gold 

= 197.2, density of gold = 19.39 g/c.c.,  Avogadro number = 6.02  x 

1023). 

Solution.  Impact parameter, b is given by the relation 

 b = k cot  =  cot   

    =  x cot (90°/2) 

    = 1.48 x 10-14  m, on simplification. 

Cross section,  =  = 3.14 x (1.48 x )2 = 6.80 x 10-28 m2 



                                                                                  

Thickness of the foil, t = 6 x 10-7 m; at. wt. of gold, W = 197.2; density 

of gold p = 19.39 x 103 kg/m3 and Avogadro number NA = 6.02 x 1026  

kg.mol. 

Now, number of atoms per unit volume, n =  =  

    = 5.9 x 1028 

From the relation: Ns / Ni = nt, we have, on substitution of the values, 

         Ns / Ni  = 6.89 x 10-28 x 5.9 x 1028 x 6 x 10-7 

 = 2.43 X 10-5. 

 

► Example 5.  An -particles of energy 5 MeV is scattered through 

180° by a fixed uranium nucleus.   Calculate the distance of closet 

approach. 

Solution.   The distance of closet approach is  

  d =  =  

     = 5.3 x 10-14 m 

► Example 6.  In Rutherford’s scattering experiment, the number of -

particles observed at an angle of 10°  is 106 per minute.  What will be the 

number observed at an angle of 90° and 180° respectively? 

Solution.  Number of particles scattered and striking unit area of the 

screen at an angle Φ is given by 

  NΦ = Nint    =  , say. 

When Φ = 10°,   N10 =    106 =   

   K = 106 x (0.0871)4 = 57.6 



 When Φ = 90°,   N90 =  =   

    =  = 230.4 

When Φ = 180°, N180 =   = K = 57.6 

► Example 7.  All odd-A nuclides have a nuclear spin, I =  (2n + 1) 

h/2 , where n = 0,1,2, … and the electron, proton, neutron all have a 

spin angular momentum  h/2 .  Prove that electron cannot exist inside 

the nucleus. 

Solution.  If there are electrons in the nucleus, instead of neutrons, then 

in the nucleus we have A protons and (A-Z) electrons.  This ensures that 

the mass is A and the charge of the nucleus is Z (= A- ). 

  Total number of particles in the nucleus = A + (A – Z) = 2A – Z. 

     For odd-A nuclides, we must have Z = odd, or Z = even. 

 When Z is odd, 2A – Z is also odd.  So, the spin will be an odd 

multiple of  h/2 , i.e.  I = 0,1,2, … which is not found for odd A 

nuclides.  Hence, electrons and protons cannot together be particles 

inside the nucleus. 

► Example 8.  Find the parties of the following two functions: 

                          (i) ψ (x) = sin ( ),   (ii) ψ (x) cos ( ) 

Solution. (i) Given: ψ (x) = sin ( ), Changing x to –x, we have 

           ψ (-x) = sin (- ) = - sin( ) = - ψ (x) 

 Hence the given function has odd parity. 



                                                                                  

 (ii) Given ψ (x) = cos ( ).  When x is change to –x, we 

obtain 

       ψ (-x) = cos (- ) = cos ( ) = ψ (x) 

 Hence the given function has even parity. 

► Example 9.  Find the mean square radius of a spherical nucleus of 

radius R with sharp edge. 

Solution.  The mean square radius is defined as 

   =   

For a spherical nucleus of radius R, with sharp edge, 

  = 3/4 R3,  for r < R 

                     = 0,           for r > R 

  =   .4 dr =  R2  

 

 



LEARNING ACTIVITY  

1. Discuss in detail about  Liquid drop model. 

2. Explain the term Binding energy. 

3. Explain the shell model in detail. 

Note: 

a) Write your answer in the space given below. 

b) Check the answer with your academic counsellor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                  

SUMMARY 

 

In this chapter, we studied the  Genreal properties of nucleus also detail 

study about binding energy and packing fraction. We detail studied 

about Nuclear stability and nuclear models. 
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OVERVIEW 

 

In this chapter on `Nuclear Physics’, we shall study the Radio activity 

and laws of disintegration .  We shall also study the term Half life and 

mean life period of Nucleas and Particle accelerator.  

 

 

 

 



                                                                                  

LEARNING OBJECTIVES 

 

After completing this Unit, you should be able to: 

 

•  Understand the Natural Radioactivity and properties of alpha, 

Beta and gamma rays.  

• Derivation about laws of disintegration with examples. 

• various types of particle accelerators 

 

4.1 Introduction 

 

Nuclear physics may be said to begin with the discovery of 

radioactivity.  During his experiments on fluorescence of Uranium,  

Becqurerel in 1896 was amazed to notice that a photographic plate, 

wrapped in black paper for protection against radiation, was affected by 

the salts of Uranium kept outside it.  In tracking the origin and nature of 

this invisible penetrating radiation, radioactivity was discovered. 

 

4.2 Radioactivity  

 

Radioactivity is the phenomenon of spontaneous disintegration, with 

emission of corpuscular or e.m. radiations of heavy atomic nuclei like 

U, Ra etc. at a constant rate, unaffected by any physical or chemical 

change or influences such as temperature, pressure etc. to which the 

atom (nucleus) may be subjected.  It is a nuclear property of the active 

element and in all radioactive processes, a transmutation of the element 

occurs and a new nucleus (new element) is formed.  Radiations from 

different radioactive substances were classified as -rays and -rays by 

Rutherford from a study on their penetrating power.  Later, a third 

energetic radiation, -rays, was discovered by Villard.  In   and -

emission processes, either Z or A or both Z and A of the nucleus change 

leading to the creation of a new nucleus (transmutation). 



 In -emission process, however, no transmutation i.e., no change 

of Z occurs, the nucleus makes only a transition from a quantum state of 

higher energy (excited state) to another of lower energy.  Any nuclide 

that undergoes a change in its structure by shedding nuclear particles 

such as  and , and giving off  -rays of its own is called a radioactive 

nucleus.  It has been found that there are 272 stable nucli of naturally 

occurring elements (they are non-radioactive); the rest are all unstable 

and hence radioactive, and are known as radio-isotopes. 

 ● In spite of the strong nuclear forces holding the constituent 

nucleons, heavy elements like U, Th, Ra etc. disintegrate spontaneously 

giving off ,  and -radiations.  What then is the reason behind this 

spontaneous decay?   The cause of this disintegration is that an unstable 

nucleus decays to attain a new configuration which is stable.  

 

 

4.3 Properties of Alpha, Beta and Gamma Rays 

Properties of α–rays 

(i) An α - particle is a helium nucleus consisting of two protons and two 

neutrons. It   

      carries two units of positive charge. 

(ii) They move along straight lines with high velocities. 

(iii) They are deflected by electric and magnetic fields. 

(iv) They produce intense ionisation in the gas through which they pass. 

The ionising power   

         is 100 times greater than that of β-rays and 10,000 times greater 

than that of γ−rays. 

(v) They affect photographic plates. 

(vi) They are scattered by heavy elements like gold. 

(vii) They produce fluorescence when they fall on substances like zinc 

sulphide or barium   

         platinocyanide. 

 

 



                                                                                  

Properties of β – rays 

(i) β–particles carry one unit of negative charge and mass equal to that 

of electron.Therefore, they are nothing but electrons. 

(ii) The β–particles emitted from a source have velocities over the range 

of 0.3 c to 0.99 c, where c is the velocity of light. 

(iii) They are deflected by electric and magnetic fields. 

(iv) The ionisation power is comparatively low 

(v) They affect photographic plates. 

(vi) They penetrate through thin metal foils and their penetrating power 

is greater than that of α−rays 

(vii) They produce fluorescence when they fall on substances like 

barium platinocyanide. 

Properties of γ – rays 

(i) They are electromagnetic waves of very short wavelength. 

(ii) They are not deflected by electric and magnetic fields. 

(iii) They travel with the velocity of light. 

(iv) They produce very less ionisation. 

(v) They affect photographic plates. 

(vi) They have a very high penetrating power, greater than that of β-

rays. 

(vii) They produce fluorescence. 

(viii) They are diffracted by crystals in the same way like X−rays are 

diffracted. 

 

4.4 Geiger-Nuttal Law 

Geiger-Nuttal law. 

The range R of an a-particle and the disintegration constant λ of the 

radioactive element that emits it are related as follows: 

log λ = A + B log R. 

 



 

Fig.12 

This relation is called Geiger-Nuttal law. If log λ are plotted against log 

R for the different α-emitters in the three series, three nearly parallel 

straight lines are obtained, one for each series (Fig. 12). 

In the relation log λ = A + B log R, the constant B is the same for all the 

series while A is different for the different series. According to this 

relation, when the disintegration constant is high, the range is also high. 

Since the range also depends on the energy, we conclude that 

radioactive substances of large decay constants emit high energy α-

particles. 

This law is helpful in determining roughly the decay constants of 

radioactive substances of very short or very long lives. Experimentally 

measuring the ranges of α -particles of such radioelement, the respective 

decay constants can be obtained by extrapolation from the curves 

representing the Geiger-Nuttal relation. 

 

 

4.5 Soddy Fajan’s displacement law  

 

During a radioactive disintegration, the nucleus which undergoes 

disintegration is called a parent nucleus and that which remains after the 



                                                                                  

disintegration is called a daughter nucleus. In 1913, Soddy and Fajan 

framed the displacement laws governing radioactivity. 

α-decay 

When a radioactive nucleus disintegrates by emitting an α-particle, the 

atomic number decreases by two and mass number decreases by four. 

The α-decay can be expressed as 

zX
A → z−2YA−4 + 2He4 

Example : Radium (88Ra226) is converted to radon (86Rn222) due to 

α−decay 

88Ra226 → 86Rn222 + 2He4 

 

β−decay 

When a radioactive nucleus disintegrates by emitting a β− particle, the 

atomic number increases by one and the mass number remains the same. 

β−decay can be expressed as 

zX
A → Z+1Y

A + −1e
0 

Example : Thorium (90Th234) is converted to protoactinium (91Pa234) due 

to β−decay 

90Th234 → 91Pa234 + −1e
0 

At a time, either α or β−particle is emitted. Both α and β particles are 

not emitted during a single decay. 

γ−decay 

When a radioactive nucleus emits γ−rays, only the energy level of the 

nucleus changes and the atomic number and mass number remain the 

same. During α or β− decay, the daughter 

nucleus is mostly in the excited state. It comes to ground state with the 

emission of γ−rays. 

 



Example : During the radioactive disintegration of radium (88Ra226) into 

radon (86Rn222), gamma ray of energy 0.187 MeV is emitted, when 

radon returns from the excited state to the ground state  

 

 

4.6 Radioactive disintegration Law 

Experimental studies on radioactivity, as conducted by Rutherford and 

Soddy, show convincingly that 

1. On emission of  or -rays which is usually, but not invariably, 

accompanied by -emission, the emitting parent nuclide 

transforms into a new daughter element; the daughter element 

again may be radioactive so that the process of successive of 

disintegration continues till the original active parent nuclide 

gets transformed into a stable one, usually lead (Pb). 

2. The rate of radioactive disintegration, that is, the number of 

atoms (nuclides)  that disintegrate at any instant t is directly 

proportional to the number Nt of the active nuclides present in 

the sample under study at that instant. 

Delay law or decay equation – Let Ni be the number of active 

nuclides present in the sample at any instant t.  Then, we have, 

experimentally  

-   Nt   = - Nt 

where , the constant of proportionality, is known as the decay constant 

– a characteristic constant of the element (nuclide).  The negative sign 

indicates that Ni  decreases (disintegration) with t. 

 Re-arranging equation, we obtain 

    = - dt 

 Integrating equation , we have  

   In Nt = - t + A 

Where A is the constant of integration. 

 At t = 0, Nt = N0, the initial number of nuclides.  So,  



                                                                                  

   A = In N0. 

 we obtain finally, 

   

 

                              In (Nt / No) = - t 

  

         or,   

 

 

 The above relation is the radioactive decay law or decay 

equation.  It shows that the number of active nuclides decreases 

exponentially with time  

 

 

According to the decay law, therefore, an infinite time is 

theoretically needed for the complete disintegration of a radio-

element and in this respect, all radio-element are the same.  So, to 

distinguish one radio-element from another, a quantity called half-

life T is more often used and we shall soon return to it.   

 

●  The significance of  should be properly understood.  For 

this, we write, as  

    =  

 

 



The r.h.s of is the number of disintegrations per nucleus per 

second.  So,  may be interpreted as the decay probability per 

nucleus per second. 

 

Statistical nature of radioactivity: 

Decay law from probability 

 

So, long we treated Nt, the number of nuclei present at time t as a 

continuous variable.  As long as Nt is very large compared to dN, the 

number of nuclei decaying during t and t + dt, this is justified and is 

usually the case.  But, in fact, Nt varies discontinuously and the smallest 

value of dNt = 1, corresponding to the decay of a single nucleus.  Thus 

the decay law is valid only for a sample sufficiently large to treat dNt as 

a  differential.  The concepts of half-life and mean life (see later) are 

meaningless when the sample consists of just a few nuclei.  As the 

number of nuclei in the sample is increased, we can say that half of 

them will decay after one half-life, although we cannot say which 

particular nuclei will decay at a given instant. 

 

 The decay law is thus statistical in nature and was deduced by 

Schweidler assuming that the disintegration of a nuclide of a radio-

element is subject to the laws of probability or chance only. 

 

 The probability p for a nuclide to disintegrate in an interval  

depends only on the length of the interval and for sufficiently short 

intervals is proportional to . 

 

   p =    

 

Where the constant proportionality  is the distintegration constant. 

 

 Then the probability that the given nuclide will not disintegrate 

during the interval  is would be given by 

  



                                                                                  

  1 – p = 1 -    

 

 The probability that this atom will not disintegrate in a second 

interval  is also 1 - .  The probability that this atom will survive 

both the intervals is therefore (1- )2.  So, for n such intervals, the 

probability of survival of the atom is  

   =  

 

if the total time t =  +  + … = n.  

 

 The probability that the atom will remain unchanged after a time t is 

given by  

 

   =  

 

 One may interpret this satistically as follows: 

 

 If No be the initial number of nuclei, the fraction remaining 

unchanged after times t is Nt/N0 = , where Nt is the number of 

unchanged nuclei after time t. 

 

    

 

   

 ●  The decay constant is also called disintegration constant or 

the radioactive constant or transformation constant.  It depends on the 

energy that is available for the nuclear transformation and on the 

characteristics of the parent and the daughter nuclei.  It is independent 

of the external conditions and the age of the sample. 

 

 ● Exponential growth  we find that out of N0 stoms at t = 0, the 

number left after time t is Nt implying that N0 – Nt atoms of parent A 

Nt =  



are converted into daughter (product)  B in time t.  If the daughter is 

non-radionactive, the rate of growth of the daughter is  

  

  N0 – Nt – No –   = N0 (1 - ) 

 

    Thus daughter product thus grows on expomentially (Fig 2.2) 

 

 

Statistical fluctutation:  Poisson distribution 

 

The time t required for observing a finite number of counts N of 

radioactive particles (say, in a GM counter) is subject to statistical 

flucturations in count rate,  n = N/t and (say, in a GM counter) is subject 

to statistical fluctuations in count rate, n = N/t and leads to an error.  We 

shall now show that the number of counts in a given time t obeys the 

Poisson’s distribution. 

 

Proof. Let PN = probability of counting N particles in time t.  Divide t 

into n equal intervals, each equal to t = t/n.  Now, t is so small (i.e., n 

so very large) that we may neglect the probability of emission of two 

particles within t. 

 

 Probability of emission of N particles in first N intervals (n  N) and 

none in remaining (n – N) intervals is 

 

     

 

Which is just one possible way to having N particles in time t. 

 

 The first particle may appear in any of  n  invervals, the second 

one in any of remaining (n – 1) intervals and so on.  So finally the Nth 

particle may appear in any of the remaining (n – ) or (n – N + 1) 



                                                                                  

intervals.  The number of ways of distributing N particles in  n  intervals 

in thus 

 

   N (n-1) (n-2) … (n – N + 1) 

 

 But all of these are not mutually independent and hence, without 

in any way influencing the results, the position can be interchanged.  

The number of possible ways of interchanging the particles – N.  

 

  PN = Probability of obtaining N counts 

 

 =  

 

     

 

which is the binomial distribution law. 

 

 Let now n  .  Then  reduces to 

 

PN =    e-N  =    

 

 

The well-known Poisson distribution formula,  

A continuous curve of PN vs. N plotted through points gives a curve 

having an asymmetric maximum for small N.   As  N  large values, the 

curve turns symmetric about the maximum and approaches the Gaussian 

error curve. 

 

 

 

 

 



 

4.7 Half Life, Mean Life periods 

 

Half life  

Half –life -  The half-life or the half-value period of a radioactive 

nuclide is defined as the time T  in which the original amount of 

radioactive nuclide is reduced by way of disintegration to half its value. 

 

 Substituting Nt  by  N0/2 in (2.2.4).  T is given for  

 

    = N0  

  

              

 

 

  or,  = 0.693 = constant 

 

 So, T  is independent of the instant from which it is 

measured.  Depending on the active nuclide, its value may range from 

1010 years to 10-7s.   The unit of T is second, the unit of λ is s-1. 

 

 Mean or Average life – The fundamental law of 

radioactive decay, as already indicated, is a statistical law implying that 

the probability of decay of a given nuclide in a short time interval dt at 

time t is  = λ dt which is independent of the age of the nuclide.  

It does not state anything about the decay of an individual atom.  Of the 

Nt  nuclides, which one would disintegrate at any instant  t  is at the 

mercy of change.  The decay law only states that the decay rate is 

proportional to Nt.  Among the nuclides, some may disintegrate almost 

immediately, while others may exist for an infinitely long time.  We do 

not know why it is so.  The actual life a nuclide may this vary from 0 to 

 and all radio-elements are the same in this respect.  We can however 

speak of an average or mean life T of a radio-element. 

T =   



                                                                                  

 

 The average or mean life  of a radioelement is the 

average life time of all the atoms in the given sample and is defined as 

the ratio of the total life time of all the atoms or nuclei to the total 

number of atoms or nuclei. 

 

 

 r =  

 

         =    =  

 

 

         =    =      

 

Where dN1 atoms have a life time t1, dN2 atoms a life-time t2 and so on. 

  

 But, we have, dN – d (N0 ) = - λ N0 dt 

 

 

   =  λ dt, substituting for dN in (2.3.5.) 

 

  = λ  

 

  = λ  =  

 

 

 

 

  Mean or average life,    

 

r =  = 1.443T 

1.443T 



 

 The mean or average life of a radioactive element is 

thus not the same on its half life.  The mean life is the reciprocal of the 

decay constant, that is, the decay probability per second and is greater 

than the half-life. 

 

 ● To get the equation (2.3.5), the curve of Fig.2.4 is 

illuminating.  The curve shows that each of dN number of active nuclei 

has lived a life time of t seconds,  i.e., the total life span of dN nuclei is 

dn.t seconds. 

 

 ● If t = r, then from the decay law, 

 

   Nt = N  -  = N0/e 

 

      Eq. (2.3.7) implies that the mean life is the time for the nuclei in an 

isotope to decay to 1/e of their original number. 

 

 ● Since the actual life of an atom extends from 0 to 

infinity, the mean life   is not of much physical importance.   The 

decay constant λ and the half-life T are more significant than r. 

 

 ● The decay constant, the half – life and the mean life 

are related to 

 each other as  

     

  

 

 Caution  The decay operation Nt -  applies to 

the behaviour of single, pure radioactive element.  Mixtures of 

radioactive substances and radio-samples having products of initial 

disintegrations that are themselves radioactive do not obey the above 

decay law. 

T =  = 0.693  



                                                                                  

 ● As λ increase,  T  decreases and conversely.  Also, 

from the decay law,  as λ increase (i.e., T decreases), the number of 

active atoms decreases more rapidly.  Conversely, if λ is small (T large), 

the number of active atoms decreases very slowly, e.g., uranium and 

theoreium.  The half-lives of U and Th are very long so that their λ-

values are very small. 

 ● The λ and T are characteristic constants of a 

radioactive substances (Fig 2.1).  The number of radioactive atoms is 

reduced by a factor ½ after a time 2 x T i.e., after two half-lives.  In 

general, the number would be reduced by  or   after a time n x T , 

that is, after n  half-lives. 

 

Activity or strength of a radio-sample 

Differentiating the decay equation Nt = N , with respect to t, we 

obtain  

    = λN  

         When t = 0,          = λN0.  Hence, from (2.4.1) above, we have 

          =    

  or,   

where At = dNt/dT  and A0 = (dNT /dt)0 = original activity = λN0 

             At is called the activity or the strength of the sample and is 

proportional to the rate of disintegration.   

             Definiction:  The acitivity or strength At of a radioactive 

sample at any instant t is defined as the number disintegrations 

occurring in the sample in unit time at t, that is  

 Activity,  At =  = λN  = λNt =   Nt 

             The acitivity per unit mass of a sample is called its specific 

acitivity. 

              ● A0 [=(dNt/dt)0] is the initial activity of the same.  The half 

life may as well be defined in terms of activity.  It is the time in which 

the activity drops to one half of the initial activity ,  

At = A0  



              ● Note that a very short lived substance gives rise to a large 

activity, even if it is present in minute quentites. 

              Units of activity – The usual unit of radioactivity is called the 

Curie (Ci) and is defined (since 1950) as the activity of any radioactive 

substance that distegrates at the rate of 3.70 x 1010 disintegrations per 

second. 

              A thousandth part of a Curie is called millicurie (mCi).  Still 

smaller unit is the micro-curie ( i).  So, by definition.  

1 Ci = 1 curie = 3.7 x 1010 disint /sec 

        1 mCi  = 10-3 Curie 

        1 Ci   = 10-6 Curie 

The SI unit of activity is the becquerel (Bq).  1 Bq – 1 

disintegration/second 

           Another unit of activity is the rutherford  (rd), defined as the 

activity of a radioactive substance disintegrating at the rate of 106 disint 

/s. 

           ● We shall now find the quantity of U-238 having 1 Curie of 

activity, for U-238  

 λUNU = 1Ci = 3.70 x 1010  distint/s, and 

          λU =  =   = 4.88 x 10-18 

           NU =   =  = 7.58 X 1027 

        Amount of U-238, having 1 Curie of activity is given by 

                   mU  =   = 2995 kg 

 

 4.8 Law of Successive disintegration 

 

The -particles having been identified as helium nuclei ( ), an -

emission by a parent melide of atomic number Z and mass number A 

transforms it into a daughter nuclide of atomic number (Z-2) and mass 

number (A-4).  Hence, it becomes a new element whose position in the 



                                                                                  

periodie table is two places lower.  The -emission process may be 

represented as  

          

 Parent element  daughter product +  particle. 

Few examples of alpha decay are: 

             +  

                 +  

               Similarly, -particles having been identified as electrons a -

emission changes the parent nuclide (Z,A) into a daughter (Z + 1,A).  

The mass number in this case remains unaltered as the mass of an 

electron is negligible.  According to the present day knowledge electron 

does not exist in the nucleus; the neutron in the nucleus spontaneously 

transforms into a proton during -emission process may be represented 

as 

       

Few examples of beta decay are: 

                         +  

                                       +  

The new element formed by -emission is an isobar to the parent 

nucleus. 

           ●  The fact that an element comes down by two places in the 

periodic table by an -emission and shoots up by one place by a -

emission constitutes the displacement law of Society and Fajan, 

enunciated empirically in 1913, when our present day knowledge 

regarding neutron proton structure of nuclei was absent. 

         ● Note that during a radioactive transformation, the mass number 

and the total charge is conserved.  The examples of  -decay (2.7.1) and 

-decay (2.7.2) are examples of nuclear reactions.  Radioactivity is 

entirely a nuclear phenomenon; the radioactive radiations come out of 

the atomic nucleus. 

 



Radioactive series – Now, the daughter of a parent radionuclide may 

itself be radioactive and decay in its turn into another radionuclide and 

the process may be repeated till the product is stable, that is, non-

radioactive.  These successive transformations of a radionuclide on 

being studied are generally found to lie in the range of atomic number Z 

– 81 to Z – 92 and form what is called a radioactive series.  A 

radioactive series is named after the longest lived member in it. 

          There are three naturally occurring, radioactive series showing 

successive transformations.  These are (i) uranium series, (ii) thorium 

series and (iii) actinium series. 

          Uranium series – The uranium series starts with  and ends at 

, a stable isotope of lead.  The series is also called (4n + 2) series, 

for the mass number of any nuclide in the series is given by  A – 4n + 2,  

n  being an integer.   

          Thorium series – The thorium series begins with  and ends 

at , another stable isotope of lead.  Since the mass number of any 

nuclide in the series is given by A – 4n, where  n  is an integer, it is 

sometimes known as 4n series and the (N, Z)-chart is given in Fig.2.7 

          Actinium series – The actinium series starts with actino-uraniu, 

that is  and ends at , a third stable isotope of lead.  The mass 

number of any nuclide in the series is given by A = 4n + 3, n being an 

integer.  The series is therefore sometimes called (4n + 3) series.   

 

          The discovery of these radioactive families is largely due to the 

pioneering and monumental work conducted by Soddy. 

 

 

 

 

 

 

 



                                                                                  

Table 2.1 :  The four radioactive series 

 

     No.        Name of the series       Mass number A              Parent 

1.        Thorium Series               A – 4n                                

    

2.        Uranium Series               A – 4n + 2                          

 

3.        Actinium Series              A – 4n + 3                          

 

4.       Neptanium Series             A – 4n + 1                         

 

 

This series is man-made.  Other three are naturally occurring. 

          Neptunium series – After the discovery of nuclear fission and the 

production of transuranic elements (i.e., man-made elements beyond 

uranium, Z > 92), a fourth radioactive series called the neptunium (Z – 

93) series has been observed.  The series starts with plutonium,   

and finishes at , a stable isotope of bismuth.  It is also called (4n + 

1) series as the mass number of any nuclide in the family is given by A 

– 4n + 1.  Its (N, Z) - chart is shown in Fig.2.9. 

           ● The several branching disintegrations in the above different 

series are worth noting.  For example, the  according to the 

following two alternative transformation: 

 (i)   

 

          ● The reason of having exactly four radioactive series is due to 

the fact that the alpha decay reduces the mass number of the nucleus by 

4. 

 

 

 

 



Successive transformation 

Consider a radioactive nuclide P.  symbolized by script 1, to decay into 

another radioactive nuclide Q (script 2); the latter again decays into a 

stable end-product R (script 3).  For instance, 

                        P(1)  Q(2) λ2 R(3) [stable] 

Let λ1, λ2  be the decay constants of nuclides 1 and 2 respectively, and 

N1, N2, N3 be the number of atoms of the three kinds at any instant t.  To 

determine N1, N2, N3. 

           The second nuclide would be formed at the rate λ1 N1 by the 

decay of the parent atom and disappear by its own decay at the rate 

λ2N2; the atoms of the of the end-product i.e.,  R appear at the rate λ2N2 

by the decay of nuclide 2, but being stable do not disappear,  So, we 

have 

                                  = - λ1N1 

                                                 =  λ1N1 - λ2N2 

                                                 =   λ2N2 

Solving:  (N1)t  =   N   

Where N10 is the number of atoms of nuclide 1 at time t = 0. 

           we obtain 

                            =  λ1 N  - λ2N2 

    + λ2N2 = λ1 N              

Multiplying both side  by , the integrating factor, 

                    = λ1 N  

           or,  = λ1   

Integrating,       =     + A 

Where A  is the constant of integration. 

      Now at  t = 0,  (N2)t = N20 = 0, since only the first nuclide is present.  

we have 



                                                                                  

 A = -  N10  

                       (N2)t =  N10   

This equation is known as the Batemann equation and it gives the 

number of daughter atoms at time  t. 

          From (2.8.3), using (2.8.7), we obtain on integration 

             (N3)t =    -  + Bλ 

At  t = 0, (N3)t = N30-0.  So from equation (2.8.8), we get  - N10 

             (N3)t – N10      

           

         The decay of the first nuclide P, the growth and decay of the 

second nuclide Q and the growth of the third nuclide R 

          Time for Q(2) to attain a maximum – Eq. (2.8.7) gives the 

number of daughter atoms N2 at time t.  It shows that N2 = 0 at t = 0.  It 

increases with increasing t and attains a maximum at t – tm, say.  This tm 

can be determined by imposing the condition dN2/dt – 0, at t - tm. 

       = 0 = N10 (                         

  = λ1e  

  =   (λ2 – λ1)tm = In  

                                     

 

              That this tm corresponds to maximum N2 can be readily verified 

by obtaining the second time-derivative of N2 which becomes negative 

at t – tm. 

Radioactive chain: General case 

We can extend the above case of successive transformations to a 

radioactive chain of any number of members the so-called general case. 

      P(1)     Q(2)   

Where P(1) is the parent nucleus, and Q(2), R(3), S(4) etc., are the 

successive products of disintegration. 

tm =   

λ 1  



          If λ1, λ2, λ3, … be the decay constants and N1, N2, N3, … be the 

number of stone at any instant  t  of nuclides 1,2,3, etc. we have the 

following set of equations. 

  = - λ1N1 

                                             =  λ1N1-  λ2 N2 

                                             =  λ2N2-  λ3 N3 

                                           …   =  …………… 

                             = λn-1 Nn-1 – λnNn 

           Bateman was the first to solve the above set of equations 

assuming that only the parent nuclide is present at t = 0, that is, 

  N20 = N30 = … = Nno = 0. 

            Let us first consider the simple case of three successive 

disintegrations, the last (fourth) nuclide being stable. 

                 = λ2N2 - λ3N3 

                        =  N10  - ,  using (2.8.7) 

Multiplying both sides by , we obtain 

                      + =   N10        

          or,     =    N10          

Integrating    =  N10  + A 

Where A is the constant of integration 

       Since  N30 = 0, this at once gives 

   N10   + A = 0 

whence              A =   N10 

           (N3)t   =  λ1λ2N10  

 

 



                                                                                  

Where, we have 

  A1 =  

       A2 =  

  A3 =  

 

            In the general case of  n  successive dintegrations, the number of 

atoms of nth nuclide, i.e., in the nth step, is 

               (Nn)t = N10 (  

 

Where  

          A1 =  

       A2 =  

  … = ……………………… 

  A3 =  

 

Radioactive equilibrium 

          An equilibrium, by definition, refers to the condition in which the 

time-derivative of a function vanishes. 

           Applying the above condition to different radioactive nuclides of 

a chain, it would mean that the number of atoms of a nuclide in the 

chain does not change with time.  Mathematically, from the set of 

equation (2.9.1), the conditions of equilibrium are: 

  = -   

  =   

  =  

 … = ……………. 

  =  



             Secular equilibrium – Plainly, the first equation of the above set 

(2.10.1) is a contradiction, for it implies = 0.  So the condition of 

equilibration cannot be satisfied rigorously. 

             A state very close to equilibrium however can be attained if the 

parent substance is very long-lived.  i.e., decays much more slowly 

compared to the other nuclides in the chain.  N1 then can be taken as 

nearly constant and   other λ’s in the chain.  Under this condition, 

the first equation of set (2.10.1) is a good approximation but the other 

conditions hold good rigorously.  This type of equilibrium is called 

secular or permanent equilibrium and is given by the condition 

  =  - …  =  

 

 

  

                         or,                           

where  is the half-life of the ith member of the given chain. 

            The relation shows that at secular equilibrium, the rate of decay 

of any radioactive product is just equal to its rate of production from the 

previous member in the chain. 

 

 

4.9 Particle Accelerator 

 

A particle accelerator is a device used to accelerate the charged 

particles, which are required in the study of artificial transmutation of 

elements. Hence the accelerator is the basic device in high energy 

particle physics. 

Accelerators can be divided broadly into two types. 

(i) The first type belongs to electrostatic accelerators in which charged 

particles are accelerated by applying a constant potential difference. The 

final energy is determined by the amount of the potential difference. 

The Cockcroft – Walton and Van de Graaff generators belong to this 

 



                                                                                  

class. These accelerators can accelerate particles only upto a few million 

electron-volts.  

(ii) The second type is the cyclic or synchronous accelerator, which 

accelerate particles in multiple steps imparting a small energy in each 

successive step. Example : Linear accelerator, cyclotron, betatron,  

synchrocyclotron and synchrotron. They can accelerate particles to  

energy of the order of 109 eV (GeV), of course, with each machine 

having its own energy limit.  

 

Accelerators 

Accelerators are some of the most remarkable tools of modern science. 

They are precision instruments constructed on a gargantuan scale. They 

have to track and accelerate particles that traverse millions of km in just 

matters of seconds, and maneuver and constrain particle motion to 

accuracies of the order of 1 /zm. They can provide sufficient numbers of 

energetic particles to vaporize macroscopic targets with single pulses of 

beam. Because of their immensity and their challenging complexity, and 

because of their symbolic reflection of the intellectual aspirations and 

creativity of mankind, modern accelerators have been likened by Robert 

R. Wilson to the great Gothic cathedrals of medieval Europe. Their 

impact on nuclear and particle physics, the fields for which they were 

initially developed, has, of course, been pivotal. They have served as the 

microscopes for probing nuclear and particle structure, and, in fact, 

were it not for the development of accelerators, the fields of nuclear and 

particle physics would still be in their infancies. 

After the pioneering experiments of Rutherford and his colleagues 

revealed the presence of a nucleus within the atom, it became clear that 

higher-energy scattering experiments could provide an invaluable probe 

of the nucleus. For example, it was understood that with sufficient 

energy to penetrate the Coulomb barrier, projectiles could break apart 

nuclei and reveal their constituents. It was also recognized that the more 

energy a particle had, the more deeply it could probe within the nucleus. 

This is simply a consequence of the fact that, through the uncertainty 

principle, large momentum transfers correspond to small distances, and 



vice versa. The study of the short-distance behavior of nuclei and of 

elementary par- tides requires therefore the availability of high energy 

beams that can be used to impart large momentum transfers either to 

target particles or to other beams of particles. 

Although high energy particles are available in the cosmic rays, their 

fluxes are quite low, and their energies, clearly, cannot be controlled. In 

fact, the excitement brought about by discoveries of new phenomena in 

experiments with cosmic rays only added impetus to the development of 

techniques for accelerating charged particles.  

The increase in accelerator energies achieved over the past 75 

years has been astounding. The first accelerators that were constructed 

(around 1930) provided beams of particles with energies of hundreds of 

keV, while the largest modern accelerators will soon have beam 

energies of almost 108 greater than that. And because of the advent of 

colliding-beam techniques, the effective increase in beam energy (that 

is, considering the energy available in the center-of-mass) has gone up 

by an even more spectacular factor of about 1012! Such changes 

correspond to differences of about 106 in the sensitivity to distance 

scales that can be studied with the next-generation accelerators, which 

expect to provide sensitivity in the range of 10~18 cm. Nowadays, 

besides being used in nuclear and particle physics, accelerators are in 

demand in a variety of applications, ranging from experiments in 

condensed matter physics, the electronics industry, biomedical and 

geophysical areas, to food processing and sewage treatment. Accelerator 

science is therefore no longer just an appendage of nuclear and particle 

physics, but is a separate intellectual discipline in its own right. 

There is a variety of ways of accelerating charged particles, and 

the methods used for any specific application depend upon the kinds of 

probes that are required, their energies, the desired beam intensities, 

and, of course, any economic constraints. We will now sketch several of 

the key historical developments in particle acceleration during the past 

75 years.   

 

 



                                                                                  

Cyclotron 

Fixed-voltage machines have an inherent limitation to their energy 

because of voltage breakdown and discharge. An alternative method, 

which uses the resonance principle, is more important for accelerating 

particles to higher energy. The cyclotron (or cyclic accelerator), first 

built by Ernest Lawrence, is the simplest of the machines that use this 

principle (see Fig. ). The accelerator is constructed out of two hollow 

evacuated D-shaped metal chambers (referred to as Ds), which are 

connected to an alternating highvoltage source. The entire system is 

placed inside a strong magnetic field perpendicular to the Ds. The 

principle of operation of the cyclotron is as follows. 

 

Although the hollow Ds are connected to the source of high voltage, 

because of the shielding effect of the metallic chamber walls, there is no 

electric field within the Ds. Consequently, a strong alternating electric 

field exists only in the gap between the Ds. A source for producing ions 

is placed in the gap between the Ds, and, depending on the sign of the 

voltage at that moment, any ion in the gap is attracted towards one of 

the Ds. However, the trajectory of the ions is circular because of the 

bending effect of the magnetic field. Once an ion is inside the D, it stops 

sensing the electric force, but continues in its circular motion because of 

the presence of the static magnetic field. But after a half circle, when the 



ion is about to emerge from the D, the direction of the voltage can be 

changed and the ion can be accelerated again before it enters the other 

D. Similarly, when it is about to exit from the second D, the applied 

voltage can again be reversed and the particle accelerated further. If the 

frequency of the alternating voltage source is just right, then the charged 

particle can be accelerated continuously and move in ever increasing 

radial orbits, until it is extracted to strike a target (for example, by 

suddenly turning off the B field).  

For non-relativistic motion, the frequency appropriate for the alternating 

voltage can be calculated from the fact that the magnetic force provides 

the centripetal acceleration for a circular orbit. That is,  

mv2r = qvB/C 

v/r = qB/mc 

Now, for circular motion at constant speed, the angular frequency u is 

related to the radius and circular velocity of the orbit as  

 

We can therefore express the frequency of the motion as 

 

Clearly, to keep the acceleration in phase with the particle motion 

requires that the frequency of the electric field be the same as v. This 

frequency is referred to as the cyclotron resonance frequency, and is the 

origin of the label "resonance accelerator" for this kind of machine. 

Equation (8.3) therefore provides a means for determining the frequency 

of the accelerating fields as a function of other parameters. The 

maximum energy that a charged particle has when it is extracted at a 

radius r = R is given by  

 



                                                                                  

Equation (8.4) relates the magnitude of the magnetic field and the size 

of the magnet that is needed to accelerate a particle to any given energy. 

In a typical cyclotron, B < 2 T , the alternating voltage applied to the Ds 

is « 200 kV, at a frequency of « 10-20 MHz. The maximum proton 

energy that can be attained in such cyclotrons is about 20 MeV (for Ds 

of R « 30 cm), as will be shown shortly in an example. As we increase 

the energy of charged particles, they become relativistic, and the 

frequency relation in Eq. (8.3) starts failing. Consequently, a fixed-

frequency cyclotron cannot accelerate ions to relativistic energies. For 

electrons, relativistic effects set in at even lower energies, and 

consequently, such simple cyclotrons are not useful for accelerating 

electrons.  

Linac or Linear Accelerator 

Linear accelerators, as the name implies, accelerate particles along 

linear trajectories rather than in circular orbits. These accelerators are 

also based on the resonance principle, and operate as follows. A series 

of metal tubes, called drift tubes, are located in a vacuum vessel and 

connected successively to alternate terminals of a radio frequency 

oscillator, as shown in Fig.  
Let us suppose that at some time the fields are as shown in the figure. 

Positive ions from the source will then be accelerated by the electric 

field towards the first drift tube. If the alternator can change its direction 

before the ions pass through that tube, then they will be accelerated 

again on their way between the exit of the first and entry into the second 

tube, and so on. However, as the particles accelerate, their velocities 

increase, and consequently, if the drift tubes are all of the same length, 

the phase between the particle positions and the potentials at the next 

tube may not keep in step (that is, the next gap may not accelerate). To 

avoid this, the drift tubes are made longer along the path so that one 

radio-frequency (RF) alternator can accelerate the particles all the way 

to the end. 



Fig. Linear ion accelerator 

Because electrons become relativistic at relatively low energies, 

electron linear accelerators act on a slight variation of the principle just 

described. The electron source is usually a hot wire filament which, 

effectively, boils off electrons. These are accelerated through a positive 

potential grid and rapidly become relativistic. Bunches of these 

electrons are then passed through accelerating tubes that are fed with 

microwave power delivered by klystron amplifiers. Electrons radiate 

easily as they get accelerated (this is referred to as synchrotron 

radiation), and therefore much power is needed to increase their energy. 

This power is supplied by the microwave fields that travel in step with 

electrons in specially shaped iris-loaded waveguides. The longest linear 

accelerator is the two-mile Stanford Linac (SLAC), and it accelerates 

electrons to energies of 50 GeV.  

Betatron 

Electrons may be accelerated to high energies by having them move in a 

circular path of constant radius and at the same time increasing the 

magnetic flux through the circular orbit in such a way that the electrons 

acquire additional energy during each revolution. Such an accelerator is 

known as a betatron. 

The first successful betatron was designed and built by D. W. Kerst 

(1940) from the theory worked out by Kerst and R. Serber. The original 

betatron,as shown in Figure 12-5, which accelerated electrons up to 2.3 

MeV, was operated as an x-ray tube; the x-rays were produced in the 

conventional manner by allowing the high-energy electrons to strike a 

target. Most betatrons built since then have also been used as x-ray 

sources, but some have been used as sources of high-energy electrons 



                                                                                  

for nuclear experiments. Betatrons that accelerate electrons up to about 

300 MeV have been built.  

 

 

Fig. Path of an electron in betatron 

In the operation of the betatron electrons from the heated filament Fare 

injected into the circular or doughnut-shaped tube by applying a 

difference of potential between the filament and the plate P, as shown in 

Figure. The electrons are focused with the aid of the grid G. When an 

alternating magnetic field is applied parallel to the axis of the tube, two 

effects are produced: an electromotive force is produced in the electron 

orbit by the changing magnetic flux that gives the electrons additional 

energy; a radial force is produced by the action of the magnetic field 

whose direction is perpendicular to the electron velocity which keeps 

the electron moving in a circular path. The magnetic flux through the 

orbit has to be chosen in such a way that the electrons will move in a 

stable orbit of fixed radius R. The electrons make several 

hundredthousand revolutions in this circular path while the alternating 



magnetic field is increasing in intensity from zero to a maximum-that is, 

during a quarter of a cycle. With each revolution they gain additional 

energy. When the electrons have acquired the desired amount of energy, 

a capacitor is discharged through two coils of wire, one directly above 

and the other directly below the stable orbit, thus producing a sudden 

addition to the magnetic flux. This destroys the condition for the 

stability of this orbit and the electron beam moves out to larger radii 

until it strikes the back of the irtiector P which acts as the x-ray target. 

We can think of the circular electron path of fixed radius R as a circuit; 

the emf V induced in this circuit by the changing magnetic flux is, 

according to Faraday's law, 

V= d¢/dt 

where ¢ is the instantaneous value of the magnetic flux which is 

perpendicular to the plane of the circuit. The work done on an electron 

of charge e in one revolution is therefore  

Ve=e d¢/dt 

This work can also be expressed in terms of the tangential force F 

which, acting on the electron over a distance ds, does an amount of 

work dW given by 

dW=F· ds 

from which  F=dW/ds 

Thus the tangential force acting on the electron is equal to the work 

done per unit length of path. Evaluating this force for one revolution for 

which the path length is 2nR, we get 

  

Now, from Newton's second law, 

F=dp/dt 

hence 

 

Or 



                                                                                  

 

Because of the presence of the magnetic flux perpendicular to the plane 

of the electron orbit, the electron will experience a radial force inward 

given by  

 

where "y = (1 - V2/C2)-1/2 and B is the value of the magnetic induction at 

the electron orbit of constant radius R. From the above equation  

myv = BeR 

p=BeR 

If R is kept constant, then differentiation of this equation yields 

dp = eR dB  

Comparing Equations, we see that 

 

from which 

 

Integrating this equation between the limits of zero and B, respectively, 

we get 

 

for the instantaneous relationship between the total magnetic flux cP 

and the magnetic induction B at a distance R from the center. This 

equation shows that the magnetic flux within the orbit of radius R is 

always proportional to the intensity of the magnetic field at the orbit 

and, furthermore, that the magnetic flux through the orbit is twice what 

it would have been if the magnetic induction were uniform throughout 

the orbit at the value B. This distribution of 

magnetic flux is obtained in an air gap between specially shaped pole 

faces of an electromagnet. 



Most modern betatrons are operated from a 60-Hz ac source. Since the 

magnet and its coils constitute a large inductance, a very large 

capacitance is introduced into the circuit to bring the power factor closer 

to unity for efficient operation. In a 1 OO-Me V betatron the electrons 

are accelerated during a quarter of a cycle-that is, during 1/240 sec. The 

energy acquired by an electron per revolution is 400 e V; hence it has to 

make 250,000 revolutions to acquire the maximum energy. In practice 

the energy of the electrons, hence that of the x-ray photons, can be 

varied from about 10 to 100 MeV by applying the orbit-shifting 

magnetic field at different times during the quarter-cycle that the field is 

increasing.  

 



                                                                                  

LEARNING ACTIVITY  

1. What is natural radioactivity. 

2. State Laws of disintegration . 

3. Derive an expression for Half life and Mean life of Nuclease 

4. Describe the  construction and working of Linear 

accelerator.  

Note: 

a) Write your answer in the space given below. 

b) Check the answer with your academic counsellor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

SUMMARY 

 

In this chapter, we studied the radioactivity and properties of alpha, beta 

and  gamma rays. Also detail studied about  laws of disintegration and 

its types. We detail studied about half life and mean life and different 

types of particle acceletaors. 
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OVERVIEW 

 

In this chapter you will be learning about types of nuclear reactions and 

conservation always connected to nuclear reaction. Also it will be 

discussed in this lesson about the theories of nuclear reactions. Cross 

section of nuclear reaction, compound nuclear formation and statistical 

theory connect to compound values. 

 

 

 



                                                                                  

LEARNING OBJECTIVES 

 

After completing this Unit, you should be able to: 

 

• Classification of Nuclear reactions 

• Energy of nuclear reaction – Q value and artificial radioactivity. 

• Distinguish Between Nuclear fission and Nuclear fusion  

 

5.1 Introduction 

A nuclear reaction is a process that takes place when a nuclear particle 

such as proton, neutron, deuteron, a-particle etc comes in close contact 

(with in 10-15m) with another, and energy and momentum exchanges 

occur. The final products of the reactions are also some nuclear particle 

or particles that leave the point of contact in different directions. The 

process results in the transmutation of target nucleus. The changes that 

occur in a nuclear reaction usually involve strong nuclear force. Process 

that involve nuclear interactions (e.g. b-decay) are purely 

electromagnetic (e.g. coulomb scattering) are not included under nuclear 

reactions but changes of nuclear states due to electromagnetic 

interactions are included. A general equation representing a nuclear 

reaction is of the form 

 

Where X is the target nucleus, x the bombarding particle, Y is residual 

product nucleus and y the ejected particle. In nuclear reaction charge 

number, mass number, total energy etc are conserved.  

 

5.2 Types of Nuclear Reaction 

  

A) Elastic scattering: The incident particle strikes the target nucleus 

and leaves without energy loss, but scattered in different directions. The 

residual nucleus is the same as the target nucleus and is left in the same 



state (ground state) and is represented as X(x, y) X. Scattering of a 

particles in gold is an example of this process.  

Example:  

 

B) Inelastic Scattering: Here same particles are scattered in different 

directions with different energy, as there is loss of energy due to 

collision. The residual nucleus, which is the same as target nucleus, is 

left in an excited state and the process is represented as X(x, y) X*. 

Example: 

 

The star is used to indicate that, after scattering nucleus is left in an 

excited state. In the above example the excess energy is radiated away 

in the form of a g-quantum. 

C) Disintegration: In scattering the target nucleus the incident particle 

is absorbed and a different particle is ejected. The product nucleus 

differs from target nucleus. The incident particle may be an a-particle, 

proton, neutron etc. The product particle may be a charged particle or a 

neutron. 

Example:  

 

 

D) Photo- Disintegration: Here the g-rays are absorbed by the target 

nucleus, exciting to a higher quantum state. If the energy is high 

enough, one or more particles may be liberated. 

Example: 

 

E) Radioactive Capture: The incident particle is absorbed or captured 

by the target nucleus to form the excited compound nucleus which 

disintegrates to produce one or more g-photons and goes down to the 

ground state. 

Example: 



                                                                                  

 

The process may be represented as X(x, r) Y* 

F) Direct Reaction: A collision of an incident particle with the nucleus 

may immediately pull one of the nucleons out of the target nucleus and 

is called pick up reaction. In the reverse process, a bombarding particle 

composed of more than one nucleon may loss one of them to the target 

by stripping reaction. 

Example: 

 

G) Nuclear Fission: In heavy nuclei, neutrons produce fission reaction 

in which the nuclei disintegrate into two nuclei of comparable size 

along with the emission of neutrons and release of energy. 

There are many other types of nuclear reactions such as elementary 

particle reaction involving production of elementary particles many 

body reaction in which two or more particles are emitted by the 

compound nucleus, nuclear fusion in which light nuclei combine to 

form a heavier nucleus etc., 

 

5.3 Energy of nuclear Reactions: Q value 
 

It was found that in conservation of mass-energy, neither the kinetic 

energy nor the rest mass is conserved by itself but their sum is always 

conserved. In the derivations of energy relations in low-energy nuclear 

physics the non-relativistic approximation is adequate. 

Consider the nuclear reaction X(x, y) Y represented by the equation 

X + x = Y + y 

Where X is the target nucleus of mass Mx, Y the product or recoil 

nucleus of mass My, x the incident particle of mass mx and y the 

product particle of mass my. 

Also let KX, KY, Kx, Ky are the K.E. of X, Y, x , y. Assume that X is 

initially at rest so that KX = 0. The total energy of a particle is the sum 

of its kinetic energy and rest energy. 



As energy is conserved, we have 

MX c2 + (Kx + mx c2) = (KY + MY c2) + (Ky +my c2) 

Or   

KY+Ky–Kx=(MX + Mx – MY – my) c2    

  (1) 

Where, c is the velocity of light in free space. The quantity on the 

L.H.S. of equation (1) is the difference between the kinetic energies of 

the products of the reaction and that of the interacting particles. This is 

denoted by Q which is equal to the difference of the rest mass energies 

of the interacting particles and that of the product particles. Here 

Q = KY + Ky -Kx 

= (MX+mx–MY–my) c2       

 (2) 

= MX + mx – MY – my , energy units 

The quantity Q is known as the energy balance of the nuclear reaction, 

or Q-value. It is nothing but the net surplus or deficit of energies of the 

reaction products KY + Ky over the energy supplied Kx. 

Three possibilities: 

1) Exoergic reaction: From eqn (2) 

 if (MX + Mx) > (MY + My) then (KY + Ky) > Kx and Q > 0.  

Such a nuclear reaction is said to be exoergic or exothermic reaction 

because it release energy. In this case there is a net decrease in the mass 

after the nuclear reaction and the lost mass gets converted into surplus 

energy according to the relation E = mc2. This energy is imparted as 

K.E. to the product particles. 

2) Endoergic reaction:  

If (MX + Mx) < (MY + My), then (KY + Ky) < Kx and Q <0.  

Such a nuclear reaction is said to be endoergic or endothermic reaction 

because some energy is to be supplied from outside for the reaction to 

occur. In exoergic reaction, there is a net increase in the mass after the 

nuclear reaction and the increase in mass is provided by supplying 

energy to the incident particle so that the reaction proceeds in the 

forward direction. In endoergic reaction, a minimum amount of energy 

equal to the negative Q-value of the reaction must be given to the 



                                                                                  

incident particle so that the reaction occurs. Such an energy is called the 

threshold energy of the endoergic reaction. 

3) Q-Value: 

The third possibility is that Q = 0 which occurs if (MX + Mx) = (MY + 

My) that is, the sum of he masses of the interacting particles is equal to 

the sum of the rest masses of the product particle. It gives rise to the 

elastic collision where there is no loss of energy but only change in the 

direction of the particles. 

Hence nuclear reactions involve information about the nuclear masses 

and the particle energies and can be employed to derive information 

about the mass of nuclei, particle energies or Q-values. The quantity 

KY, the recoil energy of the product nucleus is usually small and 

difficult to measure. It can be eliminated by applying the conservation 

of momentum to the reaction.  

   

5.4 Artificial radioactivity 

Artificial transmutation 

Artificial transmutation is the conversion of one element into another by 

artificial methods. The first successful artificial transmutation was 

carried out by Rutherford. When nitrogen was bombarded with α-

particles of sufficient energy, a rare isotope of oxygen (8O
17) and a 

proton were formed. 

7N
14 + 2He4 → 8O

17 + 1H
1 

This process is called nuclear reaction. 

In a nuclear reaction, the sum of initial atomic numbers (charges) is 

equal to the sum of the final atomic numbers, i.e conservation of 

charges is satisfied. In the same way, conservation of nucleons is also 

satisfied. But the initial rest mass is not equal to the final rest mass. The 

energy equivalence of the difference between the rest masses is equal to 

the nuclear reaction energy Q. The nuclear reaction can be written as 

A + a → B + b + Q 

where A is the target nucleus and a, the bombarding particle. B and b 

are the product nucleus and particle. 



 

Artificial radioactivity 

Artificial radioactivity or induced radioactivity was discovered 

by Irene Curie and F. Joliot in 1934. This is also known as man-made 

radioactivity. The phenomenon by which even light elements are made 

radioactive by artificial or induced methods is called artificial 

radioactivity. 

Curie and Joliot showed that when lighter elements such as 

boron and aluminium were bombarded with α-particles, there was a 

continuous emission of radioactive radiations, even after the α−source 

had been removed. They showed that the radiation was due to the 

emission of a particle carrying one unit positive charge with mass equal 

to that of an electron. This particle is known as positron and the reaction 

is 

 

The nitrogen atom is radioactive and decays with a half life of about 

10.1 minutes into a stable isotope of carbon with the emission of a 

positron 

7N
13* → 6C

13 + 1e
0 

In the case of Aluminium, 

13A
l27 + 2He4 → 15P

30* + 0n
1 

Radio-phosphorous decays into a stable isotope of silicon with the 

emission of a positron. The half life of radioactive phosphorous is about 

3 minutes. 

15P
30* → 14Si30 + 1e

0 

Artificial radioactivity follows the same laws of natural radioactivity. 

Artificial radioactive elements emit electrons, positrons, neutrons and γ 

rays. 

 

Production of artificial radio-isotopes 

(i) Artificial radio-isotopes are produced by placing the target element 

in the nuclear reactor, where plenty of neutrons are available. 

(1)15P
31 + 0n

1 → 15P
32* + γ, and (2) 11Na23 + 0n

1 → 11Na24* + γ 



                                                                                  

(ii) Another method of production of artificial radio-isotope is to 

bombard the target element with particles from particle accelerators like 

cyclotron. 

11Na23 + 1H
2 → 11Na24* + 1H

1 

Applications of radio-isotopes 

The radio-isotopes have wide applications in medicine, agriculture, 

industry and research. A radio-isotope is added to a particular system 

and the course of the isotope is studied to understand the system. 

(i) Medical applications 

In medical field, radio-isotopes are used both in diagnosis and therapy. 

Radio cobalt (Co60) emitting γ−rays is used in the treatment of cancer. 

Gamma rays destroy cancer cells to a greater extent.  

Radio-sodium (Na24) is used to detect the presence of blocks in blood 

vessels, to check the effective functioning of heart in pumping blood 

and maintaining circulation. Radio-iodine (I131) is used in the detection 

of the nature of thyroid gland and also for treatment. Radioiodine is also 

used to locate brain tumours. 

Radio-iron (Fe59) is used to diagnose anaemia. An anaemic patient 

retains iron in the blood longer than normal patient. Radio-phosphorous 

(P32) is used in the treatment of skin diseases. 

(ii) Agriculture 

In agriculture, radio-isotopes help to increase the crop yields. Radio-

phosphorous (P32) incorporated with phosphate fertilizer is added to the 

soil. The plant and soil are tested from time to time. Phosphorous is 

taken by the plant for its growth and radio-phosphorous is found to 

increase the yield. Sprouting and spoilage of onions, potatoes, grams 

etc. Are prevented by exposure to a very small amount of radiation. 

Certain perishable cereals remain fresh beyond their normal life span 

when exposed to radiation. 

(iii) Industry 

In Industry, the lubricating oil containing radio-isotopes is used to study 

the wear and tear of the machinery. 

 



(iv) Molecular biology 

In molecular biology radio-isotopes are used in sterilizing 

pharmaceutical and surgical instruments. 

(v) Radio-carbon dating 

In the upper atmosphere, C14 is continually formed from N14 due to the 

bombardment by neutrons produced from cosmic rays.  

7N
14 + 0n

1 → 6C
14* + 1H

1. 

The C14 is radioactive with half life of 5570 years. 

The production and the decay of C14 are in equilibrium in atmosphere. 

The ratio of C14 and C12 atoms in atmosphere is 1 : 106. Hence, carbon 

dioxide present in the atmosphere contains a small portion of C14. 

Living things take C14 from food and air. However with death, the 

intake of C14 stops, and the C14 that is already present begins to decay. 

Hence the amount of C14 in the sample will enable the calculation of 

time of death i.e, the age of the specimen could be estimated. This is 

called radio-carbon dating. This method is employed in the dating of 

wooden implements, leather clothes, charcoal used in oil paintings, 

mummies and so on.  

Biological hazards of nuclear radiations 

When γ-ray or any high energy nuclear particle passes through human 

beings, it disrupts the entire normal functioning of the biological system 

and the effect may be either pathological or genetic. The biological 

effects of nuclear radiation can be divided into three groups 

(i) Short term recoverable effects 

(ii) long term irrecoverable effects and 

(iii) genetic effect 

The extent to which the human organism is damaged depends upon  

(i) the dose and the rate at which the radiation is given and 

(ii) the part of the body exposed to it. 

Smaller doses of radiation exposure produce short term effects such as 

skin disorder and loss of hair. If the exposure is 100 R*, it may cause 

diseases like leukemia (death of red blood corpuscle in the blood) or 

cancer. When the body is exposed to about 600 R, ultimately it causes 

death. Safe limit of receiving the radiations is about 250 milli roentgen 



                                                                                  

per week. The genetic damage is still worse. The radiations cause injury 

to genes in the reproductive cells. This gives rise to mutations which 

pass on from generation to generation. 

The following precautions are to be taken for those, who are working in 

radiation laboratories. 

(1) Radioactive materials are kept in thick−walled lead container. 

(2) Lead aprons and lead gloves are used while working in hazardous 

area. 

(3) All radioactive samples are handled by a remote control process. 

(4) A small micro−film badge is always worn by the person and it is 

checked periodically for the safety limit of radiation. 

 

 

5.5  Nuclear fission 

 

In 1939, German scientists Otto Hahn and F. Strassman discovered that 

when uranium nucleus is bombarded with a neutron, it breaks up into 

two fragments of comparable masses with the release of energy. 

The process of breaking up of the nucleus of a heavier atom into two 

fragments with the release of large amount of energy is called nuclear 

fission. The fission is accompanied of the release of neutrons. The 

fission reactions with 92U235 are represented as 

92U
235 + 0n

1 → 56Ba141 + 36Kr92 + 3 0n
1 + Q ...(1) 

92U
235 + 0n

1 → 54Xe140 + 38Sr94 + 2 0n
1 + Q ...(2) 

In the above examples the fission reaction is taking place with the 

release of 3 neutrons and 2 neutrons. On an average 2.5 neutrons per 

fission are actually released. Of the many possible fission reactions of 

92U
235, the reaction given in equation (1) is the most favourable. 

Energy released in fission 

Let us calculate the amount of energy released during the fission of 

92U
235 with a neutron. The fission reaction is  

92U
235 + 0n

1 → 56Ba141 + 36Kr92 + 30n
1 + Q 

Mass of 92U
235 = 235.045733 amu 



Mass of 0n
1 = 1.008665 amu 

Total mass of the reactant = 236.054398 amu 

Mass of 56Ba141 = 140.9177 amu 

Mass of 36Kr92 = 91.8854 amu 

Mass of 3 neutrons = 3.025995 amu (3 × 1.008665) 

Total mass of the products = 235.829095 amu 

∴ Mass defect = 236.054398 – 235.829095 = 0.225303 amu 

As, 1 amu = 931 MeV, energy released in a fission = 0.225303 × 931 = 

200 MeV 

Niels Bohr and John A. Wheeler explained the nuclear fission process 

with the help of liquid drop model. A liquid drop has a spherical shape 

due to surface tension. On applying external force the sphere changes 

into ellipsoid, which may change into a dumb bell shape when the force 

is larger. This may break at the narrow end into two portions. 

 

Fig 8.7 Bohr – Wheeler’s explanation of Nuclear fission 

In the same way, when the heavier nucleus absorbs a neutron, a 

compound nucleus is formed and is left in an excited state. The 

excitation energy sets up a series of rapid oscillations. The compound 

nucleus undergoes distortion from spherical to dumb bell shape. Each 

portion of the dumb bell has a positive charge and one repels the other. 

This results in fission and the formation of fission fragments (Fig ) 

 

 

5.6 Chain reaction 

   Consider a neutron causing fission in a uranium nucleus 

producing three neutrons. The three neutrons in turn may cause fission 

in three uranium nuclei producing nine neutrons. These nine neutrons in 

turn may produce twenty seven neutrons and so on. A chain reaction is a 



                                                                                  

self propagating process in which the number of neutrons goes on 

multiplying rapidly almost in a geometrical progression. 

Two types of chain reactions are possible. In the uncontrolled 

chain reaction, the number of neutrons multiply indefinitely and the 

entire amount of energy is released within a fraction of a second. This 

type of chain reaction takes place in atom bombs. 

In the controlled chain reaction the number of fission producing 

neutron is kept constant and is always equal to one. The reaction is 

sustained in a controlled manner (Fig ). Controlled chain reaction is 

taking place in a nuclear reactor. 

 

Fig  Controlled chain reaction 

When a thermal neutron bombards U235 nucleus, it breaks into two 

fission fragments and three fast neutrons (Fig 8.8). One neutron may 

escape and one neutron may be captured by U238 which decays to Np239 

and then to Pu239. One neutron is available for carrying out chain 

reaction. The chain reaction is possible, only when the loss of neutrons 

is less than the neutrons produced. 

 

 



Critical size 

Critical size of a system containing a fissile material is defined as the 

minimum size in which atleast one neutron is available for further 

fission reaction. The mass of the fissile material at the critical size is 

called critical mass. The chain reaction is not possible if the size is less 

than the critical size. 

Atom bomb 

Atom bomb is based on the principle of uncontrolled fission chain 

reaction. Natural uranium consists of 99.28% of U238 and 0.72% of U235. 

U238 is fissionable only by fast neutrons. Hence, it is essential in a bomb 

that either U235 or Pu239 should be used, because they are fissionable by 

neutrons of all energies. An atom bomb consists of two hemispheres of 

U235 (or 94Pu239), each smaller than the critical size and are kept apart by 

a separator aperture (Fig). 

 

Fig  Atom bomb 

When the bomb has to be exploded, a third well fitting cylinder of U235 

(or 94Pu239) whose mass is also less than the critical mass, is propelled 

so that it fuses together with the other two pieces. Now the total quantity 

is greater than the critical mass and an uncontrolled chain reaction takes 

place resulting in a terrific explosion.  

The explosion of an atom bomb releases tremendous amount of energy 

in the form of heat, light and radiation. Temperature of millions of 

degree celsius and pressure of millions of atmosphere are produced. 

Such explosions produce shock waves. The release of dangerously 

radioactive γ−rays, neutrons and radioactive materials produce a health 

hazards over the surroundings for a long time. These bombs were used 

in world war II and were exploded over Hiroshima and Nagasaki in 

Japan. We are quite familiar with the amount of destruction and hazard. 

 



                                                                                  

5.7 Nuclear reactor 

 

A nuclear reactor is a device in which the nuclear fission reaction takes 

place in a self sustained and controlled manner. The first nuclear reactor 

was built in 1942 at Chicago USA. 

Depending on the purpose for which the reactors are used, they may be 

calssified into research reactors, production reactors and power reactors. 

Research reactors are used primarily to supply neutrons for research 

purpose and for production of radio-isotopes. The purpose of production 

reactors is to convert fertile (non-fissile but abundant) material into 

fissile material. The power reactor converts nuclear fission energy into 

electric power. The power reactors can be further classified into boiling 

water reactor, pressurised water reactor, pressurised heavy water reactor 

and fast breeder reactor depending upon the choice of the moderator and 

the coolant used. Numerous reactors of different designs have been 

constructed all over the world for a variety of purposes, but there exists 

a number of general features common to all the reactors. The schematic 

diagram of a nuclear reactor is shown in Fig . 

 

 

Fig  Nuclear reactor 

Fissile material or fuel 

The fissile material or nuclear fuel generally used is 92U
235. But this 

exists only in a small amount (0.7%) in natural uranium. Natural 

uranium is enriched with more number of 92U
235 (2 – 4%) and this low 



enriched uranium is used as fuel in some reactors. Other than U235, the 

fissile isotopes U233 and Pu239 are also used as fuel in some of the 

reactors. 

In the pressurised heavy water reactors (PHWR) built in our 

country, natural uranium oxide is used as fuel. Tiny pellets of uranium 

oxide are packed in thin tubes of zirconium alloy and sealed to form a 

fuel rod. Nineteen such rods are tied together to form a fuel bundle. The 

reactor vessel which goes by the name ‘Calandria’ has about three 

hundred tubes passing through it. The fuel bundles are placed in these 

108 tubes. The part of the reactor vessel which contains the fuel rods is 

known as reactor core. In the pressurised light water reactors (PWR), 

low enriched uranium is used. In the fast breeder test reactor (FBTR) at 

Kalpakkam, a mixture of the carbides of uranium and plutonium is used 

as fuel. 

The fuel of the prototype fast breeder reactor (PFBR) that is being built 

at Kalpakkam, is a mixture of oxides of plutonium and uranium. In the 

fast breeder reactors, the fuel pellets are packed in special stainless steel 

tubes to withstand the high temperature.Kamini [Kalpakkam mini 

reactor] is the only operating reactor in the world which uses 92U
233 as 

fuel. In this reactor, the fuel is an alloy of uranium and aluminium and is 

in the form of plates. 

(ii) Moderator 

The function of a moderator is to slow down fast neutrons 

produced in the fission process having an average energy of about 2 

MeV to thermal neutrons with an average energy of about 0.025 eV, 

which are in thermal equilibrium with the moderator. Ordinary water 

and heavy water are the commonly used moderators. A good moderator 

slows down neutrons by elastic collisions and it does not remove them 

by absorption. The moderator is present in the space between the fuel 

rods in a channel. Graphite is also used as a moderator in some 

countries. In fast breeder reactors, the fission chain reaction is sustained 

by fast neutrons and hence no moderator is required. 

 



                                                                                  

(iii) Neutron source 

A source of neutron is required to initiate the fission chain reaction for 

the first time. A mixture of beryllium with plutonium or radium or 

polonium is commonly used as a source of neutron.  

(iv) Control rods 

The control rods are used to control the chain reaction. They are 

very good absorbers of neutrons. The commonly used control rods are 

made up of elements like boron or cadmium. The control rods are 

inserted into the core and they pass through the space in between the 

fuel tubes and through the moderator. By pushing them in or pulling 

out, the reaction rate can be controlled. In our country, all the power 

reactors use boron carbide (B4C), a ceramic material as control rod. 

(v) The cooling system 

The cooling system removes the heat generated in the reactor 

core. Ordinary water, heavy water and liquid sodium are the commonly 

used coolants. A good coolant must possess large specific heat capacity 

and high boiling point. The coolant passes through the tubes containing 

the fuel bundle and carries the heat from the fuel rods to the steam 

generator through heat exchanger. The steam runs the turbines to 

produce electricity in power reactors. 

The coolant and the moderator are the same in the PHWR and 

PWR. In fast breeder reactors, liquid sodium is used as the coolant. A 

high temperature is produced in the reactor core of the fast breeder 

reactors. Being a metal substance, liquid sodium is a very good 

conductor of heat and it remains in the liquid state for a very high 

temperature as its boiling point is about 1000o C. 

(vi) Neutron reflectors 

Neutron reflectors prevent the leakage of neutrons to a large extent, by 

reflecting them back. In pressurised heavy water reactors the moderator 

itself acts as the reflector. In the fast breeder reactors, the reactor core is 

surrounded by depleted uranium (uranium which contains less than 

0.7% of 92U
235) or thorium (90Th232) which acts as neutron reflector. 

Neutrons escaping from the reactor core convert these materials into 

Pu239 or U233 respectively. 



(vii) Shielding 

As a protection against the harmful radiations, the reactor is surrounded 

by a concrete wall of thickness about 2 to 2.5 m.  

Breeder reactor 

92U
238 and 90Th232 are not fissile materials but are abundant in nature. In 

the reactor, these can be converted into a fissile material 94Pu239 and 

92U
233 respectively by absorption of neutrons. The process of producing 

more fissile material in a reactor in this manner than consumed during 

the operation of the reactor is called breeding. A fast reactor can be 

designed to serve as a good breeder reactor. 

Uses of reactors 

(1) Nuclear reactors are mostly aimed at power production, because of 

the large amount of energy evolved with fission. 

(2) Nuclear reactors are useful to produce radio-isotopes. 

(3) Nuclear reactor acts as a source of neutrons, hence used in the 

scientific research. 

 

5.8 Nuclear fusion 

Nuclear fusion is a process in which two or more lighter nuclei combine 

to form a heavier nucleus. The mass of the product nucleus is always 

less than the sum of the masses of the individual lighter nuclei. The 

difference in mass is converted into energy. The fusion process can be 

carried out only at a extremely high temperature of the order of 107 K 

because, only at these very high temperatures the nuclei are able to 

overcome their mutual repulsion. Therefore before fusion, the lighter 

nuclei must have their temperature raised by several million degrees. 

The nuclear fusion reactions are known as thermo-nuclear reactions. 

 Hydrogen bomb 

The principle of nuclear fusion is used in hydrogen bomb. It is an 

explosive device to release a very large amount of energy by the fusion 

of light nuclei. The temperature required for the purpose of fusion is 

produced by fission reactions. The explosion of an atom bomb produces 



                                                                                  

temperature of the order of 50 million degree celcius. A suitable 

assembly of deuteron and triton is arranged at the sight of the explosion 

of the atom bomb. Favourable temperature initiates the fusion of light 

nuclei in an uncontrolled manner. This releases enormous amount of 

heat energy. 

The fusion reaction in hydrogen bomb is  

1H
3 + 1H

2 → 2He4 + 0n
1 + energy 

 

5.9 Thermo Nuclear Reactions 

Stellar energy 

Fusion is the source of stellar energy. The temperature of the interior of 

the sun is about 1.4 × 107 K and the temperature of some stars is of the 

order 108 K. It has been estimated that the total energy radiated by sun 

is about 3.8 × 1026 joule per second. The origin of such a tremendous 

amount of energy is neither chemical nor gravitational. The fusion of 

protons into helium is supposed to release energy in sun and stars. All 

the elements like hydrogen and helium are in a highly ionised state 

called plasma at such a high temperature. The energy produced in fusion 

is responsible for the maintenance of high temperature of the sun and 

stars and also for the emission of energy in the form of heat and light. 

Proton−proton cycle and carbon−nitrogen cycle are the two important 

types in which nuclear fusion takes place in sun and stars.  

Proton – Proton cycle 

1H
1 + 1H

1 → 1H
2 +1e

0 + ν (emission of positron and neutrino) 

1H
1 + 1H

2 → 2He3 + γ (emission of gamma rays) 

2 2He3 → 2He4 + 21H
1 

The reaction cycle is written as 

41H
1 → 2He4 + 21e

0 + 2ν + energy (26.7 MeV) 

Thus four protons fuse together to form an alpha particle and two 

positrons with a release of large amount of energy. 

Carbon – Nitrogen Cycle 

The following cycle of reactions take place in carbon – nitrogen cycle in 

which carbon acts as a catalyst. 



1H
1 + 6C

12 → 7N
13* + γ (emission of gamma rays) 

7N
13* → 6C

13 + 1e
0 + ν (emission of positron and neutrino) 

1H
1 + 6C

13 → 7N
14 + γ (emission of gamma rays) 

1H
1 + 7N

14 → 8O
15* + γ (emission of gamma rays) 

8O
15* → 7N

15 + 1e
0 + ν (emission of positron and neutrino) 

1H
1 + 7N

15 → 6C
12 + 2He4 

The overall reaction of the above cycle is given as 

4 1H
1 → 2He4 + 21e

0 + 2ν + energy (26.7 MeV) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LEARNING ACTIVITY

1. What is meant by Nuclear fission.

2. What is Nuclear fusion.

3. Explain the construction and working of Nuclear reactor.

4. Explain the term thermo nuclear reaction with example..

Note: 

a) Write your answer in the space given below.

b) Check the answer with your academic counsellor.



SUMMARY 

In this chapter, we studied the types of Nuclear reaction and its Q value. 

Also, detail studied about Artificial radioactivity, Radio Isotopes and its 

applications. We detail studied about nuclear fission and fusion with 

examples and also derive the thermo nuclear reactions. 




